Download Exponential-and

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Exponential and Logarithmic
Equations
Section 3.4
Objectives
• Solve a logarithmic equation.
• Solve an exponential equation.
Solve the equation
5  34
x
Change to
logarithmic form
Take the logarithm of both sides of the
equation
log5x   log 34
5  34
x
log5 (34)  x
log34
x
log5
x log5  log34
OR
x 
log34
log5
ln5x   ln 34
OR
x ln5   ln34 
x 
ln34 
ln5 
Solve the equation
e
1 4 x
Change to
logarithmic form
e
1 4 x
Take the logarithm of both sides of the
equation
e 1 4 x  20
 20
ln20   1  4x
ln20   1  4x
ln20   1
x
4
 20
OR


ln e 1 4 x  ln20
1  4x lne   ln20
1  4x  ln20
 4x  ln20  1
ln20  1
x 
4
Solve the equation
e 2x  e x  20  0
Solve using
factoring
e
e
Change to
logarithmic form
e
x
 5  0
ex  5
ln(5)  x
OR
2x
e
x
 4  0
e x  4
ln( 4)  x
negative
numbers are
not in the
domain of a
logarithm
x
 e  20  0
x
 5e  4  0
x
Take the logarithm of both sides of the
equation
e
x

5  0
e 5
x
 
ln e x  ln( 5)
x ln e   ln( 5)
x  ln 5
OR
e
x
 4  0
e x  4
ln(e x )  ln 4 
negative
numbers are
not in the
domain of a
logarithm
Solve the equation
e
Solve using the
quadratic formula
ex 
ex 
ln(5)  x
e  4
x
OR
 e  20  0
1
ln( 4)  x
negative numbers
are not in the
domain of a
logarithm
x
 12  4(1)(20)
2 *1
1  1  80
ex 
2
1  81
ex 
2
19
ex 
2
19
5
2
Change to
logarithmic form
e 5
x
2x
OR
ex 
19
 4
2
Take the logarithm of both sides of the
equation
ex  5
lne
x
  ln(5)
x lne   ln(5)
x  ln5 
OR
e x  4
ln(e x )  ln 4
negative numbers
are not in the
domain of a
logarithm
The number of bacteria in a culture
0.54t
n
(
t
)

2310
e
is modeled by
where t is in hours.
• What is the initial number of bacteria?
n (0)  2310e 0.54*0
n (0)  2310e 0
n (0)  2310 * 1
Initial population is 2310 bacteria.
• What is the relative growth rate of the
bacterium population
The relative growth rate is .54 or
54%.
The number of bacteria in a culture
0.54t
n
(
t
)

2310
e
is modeled by
where t is in hours.
• How many bacteria will there be in three
hours? n (3)  2310e
0.54*3
n (3)  11672.63863
The population in three hours will be 11673 bacteria. Note: 11672
bacteria would also be accepted.
The number of bacteria in a culture
0.54t
n
(
t
)

2310
e
is modeled by
where t is in hours.
• How many hours will it take for there to be
10000 bacteria?
10000  2310e 0.54t
10000
 e 0.54t
2310
 10000 
ln
  .54t
2310


 10000 
ln

 2310   t
.54
2.71358809  t
It will take 2.713589 hours for there to be 10000 bacteria.
Solve the equation
17  ln(3  x )  0
Change to
exponential form
Exponentiate both sides of the equation
17  ln(3  x )
17  ln(3  x )
e 17  3  x
e 17  e ln( 3x )
e
17
 3  x
 e 17  3  x
OR
e 17  3  x
e 17  3  x
 e 17  3  x
Solve the equation
ln(x  8)  ln(x  8)  0
ln(x  8)  ln(x  8)  0
lnx  8x  8  0
lnx 2  64  0
Change to
exponential form
e  x  64
0
2
1  x 2  64
65  x
2
 65  x
Exponentiate both sides of the equation
e ln x
OR
2
 64
  e0
x 2  64  1
x 
x  65  0
x  65
x 2  65  0


65 x  65  0
OR
x  65  0
OR
x   65
Continued
Solve the equation
ln(x  8)  ln(x  8)  0
Check possible solutions in original equation

 

ln  65  8  ln  65  8  0


 

ln 65  8  ln 65  8  0
ln16.06225775  ln.0622577483  0

ln .0622577483  ln  65  8  0
arguments are both positive
only solution is
negative numbers are
not in the domain of a
logarithm
65
Solve the equation
log2 x 2  5x  46  2
Factoring
Change to
exponential form
Exponentiate both sides of the equation
2log2 x
2  x  5x  46
2
2
4  x  5x  46
0  x  5x  50
2
x  10
OR
x
 10 x  5  0
x  10  0
0  x 5
x  10
x  5
Check answers in original equation
log2 102  5(10)  46  2
log2 100  50  46  2
log2 4   2
  22
x 2  5x  50  0
OR
0  x  10 x  5
OR
5 x  46
x 2  5x  46  4
2
0  x  10
2

OR
x 5  0
OR
x  5

log2  5  5( 5)  46  2
2
log2 25  25  46  2
log2 4   2
Both answers are good.
Solve the equation
log2 x 2  5x  46  2
Quadratic Formula
Change to
exponential form
Exponentiate both sides of the equation
2log2 x
22  x 2  5x  46
5  25  200
2
5  225
x 
2
5  15
x 
2
5  15 20
5  15  10
x 

 10 OR x 

 5
2
2
2
2
  22
x 2  5x  50  0
0  x 2  5x  50
x 
5 x  46
x 2  5x  46  4
4  x 2  5x  46
5  ( 5)2  4(1)(50)
x 
2(1)
2
OR
5  ( 5)2  4(1)(50)
x 
2(1)
5  25  200
2
5  225
x 
2
5  15
x 
2
5  15 20
5  15  10
x 

 10 OR x 

 5
2
2
2
2
x 
Continued
Solve the equation
log2 x 2  5x  46  2
Quadratic Formula
Check answers in original equation
log2 102  5(10)  46  2
log2 100  50  46  2
log2 4   2


log2  5  5( 5)  46  2
2
log2 25  25  46  2
log2 4   2
Both answers are good.
Solve the equation
x  5  2x  5  0
2
x
x
x 2  5x  2x  5x  0
x  5x x  2  0
x 0
OR
5x  0
OR
x 0
OR
log5 (0)  x
x 2  0
OR
0 is not in
the domain
of a
logarithm
only solutions are
x 0
OR
x 2
x 2
Solve the equation
2
2x 20
3
x  44
Change to logarithmic form
We will assume that the left side is the exponential function


log2 3x  44  2x  20
(x  44) log2 3  2x  20
x log2 3  44 log2 3  2x  20
x log2 3  2x  20  44 log2 3
x log2 3  2x  20  44 log2 3
x log2 3  2  20  44 log2 3
20  44 log2 3
x 
log2 3  2
change of base
 log 3 

20  44
log 2 

x 
 log 3 

  2
 log 2 
Solve the equation
2
2x 20
3
x  44
Change to logarithmic form
We will assume that the right side is the exponential function
log3 22x 20   x  44
(2x  20) log3 2  x  44
2x log3 2  20log3 2  x  44
2x log3 2  x  44  20log3 2
2x log3 2  x  44  20log3 2
x 2log3 2  1  44  20log3 2
 44  20log3 2
x 
2log3 2  1
change of base
 log 2 

 44  20
log 3 

x 
 log 2 
  1
2
 log 3 
Solve the equation
2
2x 20
3
x  44
Take the logarithm of both sides of the equation
2x

log22x 20   log 3x  44

 20log 2  (x  44) log 3
2x log 2  20log 2  x log 3  44 log 3
2x log 2  x log 3  44 log 3  20 log 2
2x log 2  x log 3  44 log 3  20log 2
x 2log 2  log 3  44log 3  20 log 2
20  44 log2 3
x 
2log 2  log 3
Solve the equation
11
x
Change to
logarithmic form
Take the logarithm of both sides of the
equation
ln11  x   ln 6
log11 6  x
 log11 6  x
change of base
 ln 6 
x   log11 6  1

ln
11


6
 x ln 11  ln 6
OR
ln 6
ln 11
 ln 6 
x  1

 ln 11 
x 
Solve the equation
log x  log(x  17)  log(15x )
Move all logarithms to one side and combine
using the Laws of Logarithms
log x  log( x  17)  log( 15 x)
log x x  17   log 15 x 
logx x  17   log15x   0
 x x  17  
log
0

15
x


Solve the equation
log x  log(x  17)  log(15x )
Move all logarithms to one side and combine
using the Laws of Logarithms - Continued
Change to
logarithmic form
Take the logarithm of
both sides of the
equation
logx x  17   log15x   0
10
 x x 17  
log 
 15x 
 10 0
x x  17 
1
15x
x x  17   15x
x 2  17 x  15x
x 2  32x  0
x (x  32)  0
x 0
x 0
OR
OR
x  32  0
x  32
OR
x x  17 
15x
x x  17 
1
15x
15x  x x  17 
10 0 
15x  x 2  17 x
x 2  32x  0
x (x  32)  0
x 0
x 0
OR
OR
x  32  0
x  32
Solve the equation
log x  log(x  17)  log(15x )
Move all logarithms to one side and combine
using the Laws of Logarithms - Continued
Check answers in original equation
log( 0)  log( 0  17)  log(15 * 0)
log(32)  log(32  17)  log(15 * 32)
log(32)  log15  log( 480)
0 is not in the domain
of a logarithm
only valid answer is x = 32
Solve the equation
log x  log(x  17)  log(15x )
Combine logarithms to have a single logarithm on
each side
log x  log(x  17)  log(15x )
logx x  17   log15x 
Exponentiate both sides of the equation
10log x x 17  10log 15x 
x (x  17 )  15x
x 2  17 x  15x
x 2  32x  0
x (x  32)  0
x 0
x 0
OR
OR
x  32  0
x  32
Solve the equation
log x  log(x  17)  log(15x )
Combine logarithms to have a single logarithm on
each side – Continued
Check answers in original equation
log( 0)  log( 0  17)  log(15 * 0)
log(32)  log(32  17)  log(15 * 32)
log(32)  log15  log( 480)
0 is not in the domain
of a logarithm
only valid answer is x = 32
Related documents