Download Euler Method for Solving Ordinary Differential

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Euler Method
Civil Engineering Majors
Authors: Autar Kaw, Charlie Barker
http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM
Undergraduates
5/23/2017
http://numericalmethods.eng.usf.edu
1
Euler Method
http://numericalmethods.eng.usf.edu
Euler’s Method
y
dy
 f x, y , y 0  y 0
dx
Slope

Rise
Run

y1  y0
x1  x0
 f  x0 , y 0 
y1  y0  f x0 , y0 x1  x0 
 y0  f x0 , y0 h
3
True value
Φ
x0,y0
y1, Predicted
value
Step size, h
x
Figure 1 Graphical interpretation of the first step of Euler’s method
http://numericalmethods.eng.usf.edu
Euler’s Method
y
yi 1  yi  f xi , yi h
True Value
h  xi 1  xi
yi+1, Predicted value
Φ
yi
h
Step size
xi
xi+1
x
Figure 2. General graphical interpretation of Euler’s method
4
http://numericalmethods.eng.usf.edu
How to write Ordinary Differential
Equation
How does one write a first order differential equation in the form of
dy
 f  x, y 
dx
Example
dy
 2 y  1.3e  x , y 0  5
dx
is rewritten as
dy
 1.3e  x  2 y, y 0  5
dx
In this case
f x, y   1.3e  x  2 y
5
http://numericalmethods.eng.usf.edu
Example
A polluted lake with an initial concentration of a bacteria is 107
parts/m3, while the acceptable level is only 5×106 parts/m3. The
concentration of the bacteria will reduce as fresh water enters the
lake. The differential equation that governs the concentration C of
the pollutant as a function of time (in weeks) is given by
dC
 0.06C  0, C (0)  107
dt
Find the concentration of the pollutant after 7 weeks. Take a step
size of 3.5 weeks.
dC
dt
 0.06C
f t , C   0.06C
Ci 1  Ci  f t i , Ci h
6
http://numericalmethods.eng.usf.edu
Solution
Step 1:
For i  0, t0  0, C0  107
C1  C0  f t0 , C0 h


 107  f 0, 107 3.5
  
  6 10 3.5
 107   0.06 107 3.5
 107
5
 7.9 106 parts / m3
C1 is the approximate concentration of bacteria at
t  t1  t0  h  0  3.5  3.5 weeks
C 3.5  C1  7.9 106 parts/m 3
7
http://numericalmethods.eng.usf.edu
Solution Cont
Step 2:
For i  1, t1  3.5, C1  7.9 106
C2  C1  f t1 , C1 h


  0.067.9 10 3.5
  4.74 10 3.5
 7.9 106  f 3.5, 7.9 106 3.5
 7.9 106
 7.9 106
6
5
 6.241106 parts/m 3
C2 is the approximate concentration of bacteria at
t  t2  t1  h  3.5  3.5  7 weeks
C 7  C2  6.241106 parts/m 3
8
http://numericalmethods.eng.usf.edu
Solution Cont
The exact solution of the ordinary differential equation is
given by the solution of a non-linear equation as
C (t )  1 107 e
 3t 


 50 
The solution to this nonlinear equation at t=7 weeks is
C (7)  6.5705 106 parts/m 3
9
http://numericalmethods.eng.usf.edu
Comparison of Exact and
Numerical Solutions
Figure 3. Comparing exact and Euler’s method
10
http://numericalmethods.eng.usf.edu
Effect of step size
Table 1 Concentration of bacteria after 7 weeks as a
function of step size
Step size
h
7
3.5
1.75
0.875
0.4375
11
C7
5.8×106
6.241×106
6.4164×106
6.4959×106
6.5337×106
Et
770470
329470
154060
74652
36763
|t | %
11.726
5.0144
2.3447
1.1362
0.55952
http://numericalmethods.eng.usf.edu
Comparison with exact results
Figure 4. Comparison of Euler’s method with exact
solution for different step sizes
12
http://numericalmethods.eng.usf.edu
Effects of step size on Euler’s
Method
Figure 5. Effect of step size in Euler’s method.
13
http://numericalmethods.eng.usf.edu
Errors in Euler’s Method
It can be seen that Euler’s method has large errors. This can be illustrated using
Taylor series.
dy
1 d2y
1 d3y
2
3
xi 1  xi  




y i 1  y i 
x

x

x

x
 ...
i

1
i
i

1
i
2
3
dx xi , yi
2! dx x , y
3! dx x , y
i
yi 1  yi  f ( xi , yi )xi 1  xi  
i
i
i
1
1
2
3
f ' ( xi , yi )xi 1  xi   f ' ' ( xi , yi )xi 1  xi   ...
2!
3!
As you can see the first two terms of the Taylor series
yi 1  yi  f xi , yi h are the Euler’s method.
The true error in the approximation is given by
Et 
14
f xi , yi  2 f xi , yi  3
h 
h  ...
2!
3!
Et  h 2
http://numericalmethods.eng.usf.edu
Additional Resources
For all resources on this topic such as digital audiovisual
lectures, primers, textbook chapters, multiple-choice
tests, worksheets in MATLAB, MATHEMATICA, MathCad
and MAPLE, blogs, related physical problems, please
visit
http://numericalmethods.eng.usf.edu/topics/euler_meth
od.html
THE END
http://numericalmethods.eng.usf.edu
Related documents