Download class18 - Andrew.cmu.edu

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Firm Supply
Demand Curve Facing
Competitive Firm
Supply Decision of a
Competitive Firm
Producer’s Surplus
and Profits
Long-Run
The Demand Curve Facing a
Competitive Firm
p
market
price
p
*
0
y
Supply Decision of a
Competitive Firm
Problem of a competitive firm:
max py  c( y)
y
Revenues, Costs, and Profits
py
p
( y)
c( y )
y
Maximum Profits
py
p
c( y )
y
*
y
Optimal Quantity Supplied
Firm maximizes:
max py  c( y)
y
Necessary condition for optimal choice:
c( y )
p
 MC ( y )
y
An Example
Short-run cost function:
c y   y  1
2
Marginal cost function:
MC  y   2 y
An Example
Average variable costs:
2
y
AVC y  
y
y
Average costs:
2
y
1
1
AC y  
  y
y y
y
An Example
Profit maximization:
max py   y  1
2
y
Necessary condition:
p  2y
An Example
p
AC
MC
AVC
2
0
1
y
An Example: Profits
p
AC
p
MC
AVC
*
*
AC ( y )
*
AVC( y )
0
y
*
y
Producer’s Surplus
Producer’s surplus=Area below price above
supply curve
Alternatively:
py 
*
below supply curve
where area below supply curve (MC):
*
cv ( y )
An Example: Producer’s Surplus
p
AC
p
MC
AVC
*
0
y
*
y
An Example: Producer’s Surplus
p
AC
p
MC
AVC
*
AVC( y * )
0
y
*
y
Producer’s Surplus and Profits
Producer’s surplus:
py  cv ( y )
*
*
Profits:
py  cv ( y )  F
*
*
An Example: Producer’s Surplus
and Profits
p
AC
p
MC
AVC
*
*
AC ( y )
*
AVC( y )
0
y
*
y
An Example
Output:
*
p
y 
2
*
Profits:

  py  y
*
*2

p
 1 
* 2
4
1
An Example
Profits:

p

* 2
4
Producer’s surplus:
1
1 *  p  p 
p   
2  2 
4
*
* 2
One Exception: y1 or y 2 ?
MC
AC, MC , AVC
AC
AVC
p*
y1
y2
y
A Second Exception: Shutdown!
Profits if firm produces:
  py  cv ( y )  F
*
*
Profits if firm does not produce:
  F
Producing is better if:
py  cv ( y )  0
*
*
A Second Exception: Shutdown!
Producing is better if:
py  cv ( y )  0
*
*
Rearrange. Produce only if:
*
cv ( y )
p
*
y
Shutdown
MC
AC, MC , AVC
AC
AVC
p
*
y
*
y
The Firm’s Supply Curve
AC, MC , AVC
MC
AC
AVC
0
y
Long and Short Run Supply in
Consultant Firm Example
MC S ( y )
MC ( y )
p***
p
0
MC L ( y )
91 y
L
**
yS
**
y
Shutdown in the Short-Run and
in the Long-Run
In the short-run, the shutdown condition is:
*
cv ( y )
*
p
 AVC( y )
*
y
In the long-run, the shutdown condition is:
*
c( y )
*
p  *  AC ( y )
y
Related documents