Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity A Simple Method for Computationally Inferring Microarray Sensitivity Reverter & Dalrymple BioInfoSummer 2003, AMSI, ANU, Canberra “Best Talk” A Rapid Method for Computationally Inferring Transcriptome Coverage and Microarray Sensitivity Reverter et al. 2005 Bioinformatics 21:80-89 Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Motivation Empirical Distribution of Tags MPSS Paper, Jongeneel et al. PNAS 03, 100:4702 tpm > 1 5 10 50 100 500 1,000 5,000 10,000 N Tags (0.0) (0.7) (1.0) (1.7) (2.0) (2.7) (3.0) (3.7) (4.0) 27,965 15,145 10,519 3,261 1,719 298 154 26 7 % 100.00 54.16 37.61 11.66 6.15 1.07 0.55 0.09 0.02 MPSS Test Data No Tags = 25,503 cDNA Noise Paper PNAS 02, 99:14031 S1 S2 2x2 f ( x) exp 1 x 100.00 57.14 36.11 10.89 5.73 1.21 0.57 0.15 0.05 100.00 49.87 33.66 10.74 5.67 1.13 0.55 0.11 0.05 100.00 56.19 36.79 11.76 6.95 1.94 1.11 0.29 0.16 Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Motivation Empirical Distribution of Tags 1. Universal distribution associated with stochastic processes of gene expression (Kuznetsov, 2002) 2. Framework for a mapping function: Concentration Signal Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Motivation Mapping: Concentration Signal f ( x) e x 0.0 0.7 1.0 1.7 2.0 2.7 3.0 3.7 4.0 2 x2 1 x % 100.00 56.19 36.79 11.76 6.95 1.94 1.11 0.29 0.16 Arrays 97 Signals 3,544,000 Mean 1,724 Intensity % > 100.0 56.4 36.6 12.1 6.7 0.9 0.4 0.2 0.1 1 280 560 2,800 5,600 28,000 40,000 55,000 65,000 Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Definition of Sensitivity References: • Not from Confidence (1 – ) • Not from Formulae: Sn Kane et al. 2000 TP 1 TP FN 1 Lemon et al. 2003 Zien et al. 2003 • More like Minimum Detectable Concentration/Activity Brown et al. 1996 “The smallest concentration of radioactivity in a sample that O’Malley & Deely, 2003 can be detected with a 5% Probability of erroneously detecting radioactivity, when in fact none was present (Type I Error) and also, a 5% Probability of not detecting radioactivity when in fact it is present (Type II Error).” • If = , then Sensitivity = Confidence Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Inspiration Economics 101 Quantity Supply Demand Market Equilibrium ! $ Price Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Process …for a given microarray experiment: 1. 2. 3. 2 x2 1 x From all the genes, find the intensity thresholds that define f ( x) e Apply these same threshold to the set of Differentially Expressed Genes. The ratio of 2./1. Meets at the Equilibrium defining Sensitivity. …example: 164,318 Records 6,051 Total Genes 183 Diff. Expressed Genes x 0.0 0.7 1.0 1.7 2.0 2.7 3.0 3.7 4.0 Threshold 1 312 566 3,417 5,414 13,936 17,096 26,477 30,378 All Genes 100.00 54.16 37.61 11.66 6.15 1.07 0.55 0.09 0.02 DE 100.00 99.45 97.81 46.45 27.32 5.46 3.83 0.00 0.00 % DE 3.02 5.55 7.87 12.05 13.44 15.45 21.03 0.00 0.00 Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Process All Genes 6051 x 0.0615 = 372 183 x 0.2752 = 50 50/372 = 13.44% Cat_1 (1) Cat_2 (5) Cat_3 (10) Cat_4 (50) Cat_5 (100) Cat_6 (500) Cat_7 (1000) Cat_8 (5000) Cat_9 (10000) 100.00 54.16 37.61 11.66 6.15 1.07 0.55 0.09 0.02 DE % DE 100.00 99.45 97.81 46.45 27.32 5.46 3.83 0.00 0.00 3.02 5.55 7.87 12.05 13.44 15.45 21.03 0.00 0.00 Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Inferential Validity Let NT = N of “Total” Genes ND = N of “Differentially Expressed” Genes (ND NT) nt xi f (x ) e % t N D f ( xd ) NT f ( xt ) ND NT f ( xd nd xi ) ND ND f ( xd ) f ( xt ) NT Flat line (except Upper Bound) x 1. 2. NT 2 x2 1 x N D f ( xd ) f ( xt ) NT f ( xt ) nd xi xi f ( xt ) nt xi The relevance of f(xi) is limited to the Concentration Signal mapping. At equilibrium the probability of an error either way equals. Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Mechanism INPUT: (1) Gene ID – (2) Avg Intensity – (3) DE Flag i=1 cat_nde(i) = nde ! For each category compute cat_pde(i) = 100.0 * nde/ntot ! N and Prop of DE Genes DO i = 2, 9 j = ntot - int(ntot*cat(i)/100.00) ! Pointer Location of threshold m=0 ! Counter for DE genes found so far DO k = 1, ntot IF( gene(k)%deflag > 0 )THEN m=m+1 IF( gene(k)%intens > int(gene(j)%intens) )THEN cat_nde(i) = nde-m+1 cat_pde(i) = 100.0*(cat_nde(i)/(ntot*(cat(i)/100.0))) EXIT ENDIF ENDIF ENDDO WRITE(10,1000)i,cat(i),100.0*cat_nde(i)/nde,cat_pde(i) ENDDO Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Application Examples (validation?) …from CSIRO Livestock Industries: ARRAYS 1. 2. 3. 4. Wool Follicles Beef Cattle Diets Pigs Pneumonia M Avium ss avium 10 14 16 13 GENES Total DE 6,051 6,816 6,456 132 183 450 307 47 …from Non-CSIRO Livestock Industries: 5. 6. 7. Callow et al. (2000) Lin et al. (2002) Lynx MPSS test data 16 2 2 6,384 320 27,007 1,350 25,503 8,284 Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Application Examples (validation?) Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Application Examples (validation?) 130 tpm …..I’ve seen them worse 80 tpm …..a ball-park figure 40 tpm …..possibly real 25 tpm …..possibly optimistic 5 tpm …..as Lynx claims Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Inferential Validity < Not many DE genes High Confidence Few False +ve = > Lots of DE genes High Power Few False -ve Armidale Animal Breeding Summer Course, UNE, Feb. 2006 A Quantitative Overview to Gene Expression Profiling in Animal Genetics Sensitivity Conclusions 1. We are looking at the Sensitivity of the Experiment, not the Sensitivity of the Microarray Technology. 2. The proposed method is Very Simple and Very Fast. 3. Results acceptable but could be affected by: a. b. c. d. e. N Arrays in a given experiment Quality of the Arrays themselves Quality of the RNA extracted Statistical approach to identify DE Degree of Dissimilarity between samples 4. The impact of (3.a … 3.e) is not necessarily bad. Armidale Animal Breeding Summer Course, UNE, Feb. 2006