Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Two-locus systems
Scheme of genotypes
Two-locus
genotypes
genotype
genotype
Multilocus genotypes
genotype
Two-locus two allele population
Gamete
p1
p2
p3
p4
Next generation on zygote level
Independent combination of randomly chosen parental gametes
Table gametes from genotypes I
(1-r) –no cross-over
(r) – cross-over
Type zygote- one
locus is homozygotes
Zygote
Zygote (AB,Ab) have gamete
(AB) with frequency
0.5(1-r)+0.5r=0.5
gamete
0.5(1-r)
0.5(1-r)
0.5(r)
0.5(r)
Table gametes from genotypes II
(1-r) –no cross-over
(r) – cross-over
Type zygote- both
loci is heterozygotes
Zygote
Zygote (AB,ab) have gamete
(AB) with frequency
0.5(1-r)
gamete
0.5(1-r)
0.5(1-r)
0.5(r)
0.5(r)
gamete
zygote
( AB, AB); ( AB, Ab); ( AB, aB); ( AB, ab);
( Ab, Ab); ( Ab, aB); ( Ab, ab);
(aB, aB); (aB, ab);
(ab, ab).
Position effect
Table zygote productions
AB: p1’=p12+p1p2+p1p3+(1-r)p1p4+rp2p3
Evolutionary equation for genotype AB
p1’=p12+p1p2+p1p3+(1-r)p1p4+rp2p3
r is probabilities of cross-over
(coefficient of recombination).
p2’=p22+p1p2+p2p4+rp1p4+(1-r)p2p3
p3’=p32+p3p4+p1p3+rp1p4+(1-r)p2p3
p4’=p42+p3p4+p2p4+(1-r)p1p4+rp2p3
Usually 0 r 0.5. If r=0.5 then loci are
called unlinked (or independent). If r=0
then population transform to one loci
population with four alleles.
AB Ab aB ab
p1 p2 p3 p4
p'1 =p12 +p1p 2 +p1p3 +(1-r)p1p 4 +rp 2 p3
p'1 =p12 +p1p 2 +p1p3 +p1p 4 -rp1p 4 +rp 2 p3
p'1 =p12 +p1p 2 +p1p3 +p1p 4 -r(p1p 4 -p 2 p3 )
Let
D p1p 4 -p 2 p3
. Then
'
2
1
p 1 =p +p1p 2 +p1p3 +p1p 4 -rD
'
p 1 =p1 (p1 +p 2 +p3 +p 4 )-rD
'
p 1 =p1 -rD
Measure of disequilibria
D= p1p4-p2p3
p'2 =p 22 +p1p 2 +(1-r)p 2 p3 +p 2 p 4 +rp1p 4
'
2
2
p 2 =p +p1p 2 +p 2 p3 +p 2 p 4 +rp1p 4 -rp 2 p3
p'2 =p 2 (p 2 +p1 +p3 +p 4 )+r(p1p 4 -p 2 p3 )
p'2 =p 2 +rD
p1’=p1- rD ;
p2’=p2 +rD;
p3’=p3+ rD; p4’=p4 - rD.
AB Ab aB ab
p1+p2=p(A)
p1 p2 p3 p4
p1+p3=p(B)
Gene Conservation Low
p1’+ p2’ = p1+ p2=p(A);
p1’+ p3’ = p1+ p3=p(B)
Two-locus two allele population. Equilibria.
p1=p1- rD ; p2=p2 +rD;
p3=p3+ rD; p4=p4 - rD.
D=0;
Measure of disequilibria
D= p1p4-p2p3
p1p4 = p2p3
p1 =p1 (p1 + p 2 +p3 + p 4 )= p12 +p1p 2 +p1p3 +p1p 4
p1 =p1 (p1 + p 2 +p3 + p 4 )= p12 +p1p 2 +p1p3 +p 2 p3
p1 =p1 (p1 +p 2 )+p3 (p1 +p 2 ) (p1 +p 2 )(p1 +p3 )
p1 =p(A)p(B)
p1= p(A) p(B); p2= p(A) p(b); p3= p(a) p(B); p4= p(a) p(b).
In equilibria point the genes are statistically independence.
But the genes are dependent physically, because are in pairs on
chromosome
p1' p( A) p( B) p1 rD ( p1 p2 )( p1 p3 )
p1 rD ( p p1 p2 p1 p3 p2 p3 )
2
1
p1 rD ( p12 p1 p2 p1 p3 p1 p4 p1 p4 p2 p3 )
p1 rD p1 D (1 r ) D.
p1' p( A) p( B) (1 r ) D.
Measure of disequilibria
D= p1p4-p2p3
Convergence to equilibrium
D’=p1’p4’-
p2’p3’;
p1’=p1- rD ; p2’=p2 +rD;
p3’=p3+ rD; p4’=p4 - rD.
D’=(p1- rD )(p4 - rD)-(p2 +rD)(p3+ rD)
D’=
p1 p4- p2p3 -rD(p1+p2+p3+p4) +(rD)2-(rD)2
D’=D-rD=(1-r)D;
D(n)=(1-r)nD(0);
Maximal speed convergence to equilibrium for r=0.5
D(n)=(0.5)nD(0);
Gene Conservation Low
p1’+ p2’ = p1+ p2=p(A);
p1’+ p3’ = p1+ p3=p(B)
p1= p(A) p(B); p2= p(A) p(b); p3= p(a) p(B); p4= p(a) p(b).
Infinite set of equilibrium points
p1’=p12+p1p2+p1p3+(1-r)p1p4+rp2p3
p2’=p22+p1p2+p2p4+rp1p4+(1-r)p2p3
p3’=p32+p3p4+p1p3+rp1p4+(1-r)p2p3
p4’=p42+p3p4+p2p4+(1-r)p1p4+rp2p3
r=0
p1’=p12+p1p2+p1p3+p1p4 = p1
p2’=p22+p1p2+p2p4+p2p3 = p2
p3’=p32+p3p4+p1p3+p2p3 = p3
p4’=p42+p3p4+p2p4+p1p4 = p4
p1’=p1- rD ; p2’=p2 +rD;
p3’=p3+ rD; p4’=p4 - rD.
p1’=p12+p1p2+p1p3+(1-r)p1p4+rp2p3
p2’=p22+p1p2+p2p4+rp1p4+(1-r)p2p3
p3’=p32+p3p4+p1p3+rp1p4+(1-r)p2p3
p4’=p42+p3p4+p2p4+(1-r)p1p4+rp2p3
r=1
p1’=p12+p1p2+p1p3+p2p3 = (p1+p2)(p1+p3) = p(A)p(B)
p2’=p22+p1p2+p2p4+p1p4 = (p1+p2)(p2+p4) = p(A)p(b)
p3’=p32+p3p4+p1p3+p1p4 = (p3+p4)(p1+p3) = p(a)p(B)
p4’=p42+p3p4+p2p4+p2p3 = (p3+p4)(p2+p4) = p(a)p(b)
p1’=p1- rD ; p2’=p2 +rD;
D(n)=(1-r)nD(0);
p3’=p3+ rD; p4’=p4 - rD.
D0 0. D1 0
simulation
Multilocus multiallele population
Three loci
probabilit y
gametes
(1 r1 )(1 r2 )
ABC , abc
r1 (1 r2 )
aBC ,
(1 r1 )r2
ABc , abC
r1r2
AbC aBc
Abc
_____________________
1
all possible genotypes
ABC 1, ABc 2, AbC 3, Abc 4,
aBC 5, aBc 6, abC 7, abc 8
probabilit y
gametes for zygote (1,8)
(1 r1 )(1 r2 )
ABC , abc
r1 (1 r2 )
aBC ,
(1 r1 )r2
ABc , abC
r1r2
AbC aBc
Abc
p1 (1 r1 )(1 r2 ) p1 p8 ...
p2 (1 r1 )r2 p1 p8 ...
p3 r1r2 p1 p8 ...
...
ABC 1, ABc 2, AbC 3, Abc 4,
aBC 5, aBc 6, abC 7, abc 8
p1 p2 p3 p4 p( A); p5 p6 p7 p8 p(a)
p1 p2 p5 p6 p( B); p3 p4 p7 p8 p(b)
p1 p3 p5 p7 p( B); p2 p4 p6 p8 p(c)
Equilibrium point
p1 P ( A) p ( B ) p (C )
p2 P ( A) p ( B ) p (c)
p3 P ( A) p (b) p (C )
...
Equilibrium point=limiting point of trajectories
General case
p1 (1 r1 )(1 r2 ) p1 p8 ...
p2 (1 r1 )r2 p1 p8 ...
p3 r1r2 p1 p8 ...
...
p1 11,1 p1 p1 12,1 p1 p2 13,1 p1 p3 14,1 p1 p4
16,1 p1 p6 17,1 p1 p7 18,1 p1 p8 22,1 p2 p2 ...
all possible combination
{ij, s } set of probabilit ies
Linkage distribution
ij, s ji, s
ij,1 ij, 2 ... ij,8 1
M loci and L alleles in each locus
p1 11,1 p1 p1 12,1 p1 p2 13,1 p1 p3 14,1 p1 p4
16,1 p1 p6 17,1 p1 p7 18,1 p1 p8 ...
all possible combination
{ij, s } set of probabilit ies
Linkage distribution
ij, s ji, s
ij,1 ij, 2 ... ij, M 1
{ij, s } set of probabilit ies
Linkage distribution
Problem: definition of the linkage distribution.
Nonrandom crossovers.
2
p1 p1 2 p1 p2
2
p2 p2 2 p2 p3
p1 p2 p3 1
p3 p32 2 p1 p3
p1 p1 (1 p2 p3 )
p2 p2 (1 p3 p1 )
p3 p3 (1 p1 p2 )
p3 0 p1 p2 1
p1 p1 (1 p2 p3 ) p1 (2 p1 )
definition of the linkage distribution.
p(u | v) probabilit y this partition
Equilibrium point for multilocus population
p(a1a2 a3 ...am ) p(a1 ) p(a2 ) p(a3 )... p(am )
Speed of the convergenc e to equilibria point
is max(1 - (u | v)), where u, v 0
Polyploids systems
4-ploids
Chromatid dabbling
Four gamete produced
2-ploids (diploids)
p1 11,1 p1 p1 12,1 p1 p2 13,1 p1 p3 14,1 p1 p4
16,1 p1 p6 17,1 p1 p7 18,1 p1 p8 22,1 p2 p2 ...
all possible combination
Problem: definition of the coefficients.
Polyploids systems