Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Using Mate-Pair Next Generation Sequencing (MP-Seq) To Study HPVs Roles in Cancer Development David I Smith, Ph.D. Professor and Consultant Department of Laboratory Medicine and Pathology Chairman of the Technology Assessment Group Center for Individualized Medicine Mayo Clinic Incidence trends of HNSCC in the United States 2 Risk Factors • Smoking and drinking • 6-7th decade of life, prolonged exposure • All sites • HPV (16,18) • Oropharyngeal squamous cell carcinoma (OPSCC) (30-90% of patients) • Younger patients (<50 years) • Lack traditional risk factors • Chemo/Radiation Sensitive HPV • • • • Large family of DNA viruses Approximately 8 Kb genomes Low risk HPVs cause papillomas High risk HPVs associated with cancer development • Key oncogenes are HPV E6 (targets p53) E7 (degrades pRB) What is the role of HPV in OPSCC? • It is just assumed that HPV plays a similar role as it does in cervical cancer. • So how does HPV cause cervical cancer? What does HPV do at the site of integration and is the site of integration important? • What is important? Just that HPV is integrated so that E6 and E7 can be overexpressed? • Different cervical cancers have different integration sites. Appeared “random”. General model for cervical cancer is that the sites of integration are unimportant. • Are there genes that are possibly targeted by the integrations? • Does HPV integration do more than just insert HPV at a position within the genome? HPV Integrations • We used RSO-PCR to identify sites of integration in HPV16 and HPV18-positive cervical cancers • 50% of HPV16 integrations were within one of the common fragile sites (CFSs) • 65% of HPV18 integrations were within these sites. Hot-spot around c-myc • HeLa WGS revealed that this HPV18-positive cervical cancer has HPV integrated near c-myc (which is surrounded by two CFSs), and amplification of HPV at the site of integration Common Fragile Sites (CFSs) • Highly unstable chromosomal regions found in all individuals • At least 89 distributed throughout the human genome • Hot-spots for rearrangements in many different cancers FRA3B, FRA16D, FRA6E • Three most frequently expressed CFSs • FRA3B spans 4 Mbs, FRA16D spans 2 Mbs, FRA6E spans 3 Mbs • FHIT is a 1.5 Mb gene in FRA3B • WWOX is a 1.1 Mb gene in FRA16D • PARK2 is a 1.3 Mb gene in FRA6E • All three are important tumor suppressors involved in many different cancers 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Gene Name CNTNAP2 DMD CSMD1 LRP1B CTNNA3 NRXN3 A2BP DAB-1 PDE4D FHIT KIAA1680 GPC5 GRID2 DLG2 AIP1 DPP10 Parkin ILIRAPL1 PRKG1 EB-1 CSMD3 IL1RAPL2 AUTS2 DCC GPC6 CDH13 ERBB4 ACCN1 CTNNA2 WD repeat DKFZp686H PTPRT WWOX NRXN1 IGSF4D CDH12 PAR3L PTPRN2 SOX5 TCBA1 LARGEST HUMAN GENES Chromosome Size Exons/FPT 7q35 2304258 25/8107 Xp21.1 2092287 79/13957 8p23.2 2056709 70/11580 2q22.1 1900275 91/16556 10q21.3 1775996 18/3024 14q24.3 1691449 21/6356 16p13.2 1691217 16/2279 1p32.3 1548827 21/2683 5q11.2 1513407 17/2465 3p14.2 1499181 9/1095 4q22.1 1474315 11/5833 13q31.3 1468199 8/2588 4q22.3 1467842 16/3024 11q14.1 1463760 23/3071 7q21.11 1436474 21/6795 2q14.1 1402038 26/4905 6q26 1379130 12/2960 Xp21.2 1368379 11/2722 10q21.1 1302704 18/2213 12q23.1 1248678 26/3750 8q23.2 1213952 69/12486 Xq22.3 1200827 11/2985 7q11.22 1193536 19/5972 18q21.1 1190131 29/4608 13q31.3 1176822 9/2731 16q23.2 1169565 15/3926 2q34 1156473 28/5484 17q11.2 1143718 10/2748 2p12 1135782 18/3853 2q24 1126043 16/2132 11q25 1117478 8/6830 20q12 1117144 32/12680 16q23.2 1113013 9/2264 2p16.3 1109951 21/8114 3p12.1 1109105 10/3315 5p14.3 1102578 15/4167 2q33.3 1069815 23/4176 7q36.3 1048712 22/4735 12p12.1 1030095 18/4492 6q22.31 1021499 8/3183 CFS FRA7I FRAXB FRA2F FRA10D FRA1B FRA3B FRA4F FRA4F FRA11F FRA6E (6q26) FRAXB FRA16D (16q23.2) HPV Integrations in Cervical Cancer • HeLa and 8q24.13 (between FRA8C and FRAD) • Several integrations observed in FHIT • We’ve detected 2 integrations in LRP1B • Other large genes have HPV integrations • However, integrations occur throughout the genome and not too many “hot-spots” HPV and Other Cancers • Dramatic increase in HPV-positive OPSCCs in the past two decades (now 80-90% of OPSCCs from the Mayo Clinic are HPV-positive) • 85% of anal cancers, and 50% of penile, vulvar and vaginal cancers are HPV-positive • Does HPV trigger other cancers by a mechanism similar to its’ key role in the development of cervical cancer? HPV and OPSCC • Much more complex than cervical cancer • Many patients have a history of smoking/drinking and their tumors are also HPV-positive • Not all HPV-positive OPSCCs are the same as some have very low E6/E7 expression (latent infections?) while others have high HPV E6/E7 expression HPV and OPSCC Clinically • HPV-positive OPSCC do better clinically than HPVnegative OPSCCs • Current clinical tests for the presence of HPV are now part of the clinical management of OPSCC patients • De-escalation of therapies for HPV-positive OPSCCs? • IHC for p16 (which is elevated in most HPV-positive OPSCCs) • Newer assays measure HPV E6/E7 expression (to differentiate between high and low expression of these oncoproteins) Role of HPV in OPSCCs? • Identical to cervical cancer? • Most likely not • Is HPV integrated in most HPV-positive OPSCCs? • When integrated what is the site of integration in HPV? • Is there any specificity to where HPV integrates into the human genome? • Common fragile sites and their large genes? Characterizing HPV Integration in OPSCC • Various older ways to do this • (1) RS-PCR • (2) Measure E6/E7 expression versus E2 expression (based upon the idea that when integrated E2 is disrupted) • (3) in situ hybridization looking for signals in interphase nuclei • (4) Next generation sequencing NGS to Identify HPV Integrations • Whole genome sequencing- Would require 100+ Gbs of genome sequencing. Expensive and bioinformatically challenging • RNAseq looking for fused transcripts between HPV and human genes. Only useful if HPV integrates close to a gene and makes a fused transcript • Is there a better way to do this that is both cheaper and easier? Mate-Pair Sequencing (MP-Seq) • Powerful technology to analyze genomes • Break genomes into 3-5 Kb pieces • Biotin label the ends and then circularize (Illumina strategy) • Break into small pieces and then capture the two ends as single piece • Prepare libraries to do paired-end sequencing Advantages of MP-Seq • Sequence 100 bp from the ends of each matepair • Even though you only sequence 200 bp, you are inferring information about the 5 Kb (or whatever size mate-pairs you use) between the two ends. Known as bridge coverage • With 3-5 Gbs of genome sequence can obtain a high resolution examination of genome-wide alterations (and also potentially identify HPVhuman junctions) Mate Pair Genomic DNA Library Isolate DNA Fragment Select 5-kb Fragments and End-label with Biotin Bio * * Bio 5 kb Circularize Fragment * * * Select Biotinlabeled Fragments * * * 500 bp Mate Pair Next Gen Sequencing Biotin-labeled Fragments * * * * * Next Gen Sequencing * * * * * 500 bp * 25 kb ...ACCGT * Map to Reference Genome 5 kb TTGCA... Genome Coverage 1/6 lane Illumina 7x coverage Mate Pair Sequencing of OPSCC • 28 HPV-positive OPSCCs • Construct 5 Kb mate-pair libraries • Bar-code and sequence 4-6/lane on Illumina HiSeq 2500s • Obtain 70-100 million reads/library New Algorithms • Sarah Johnson and George VasmatzisBiomarker Discovery Program of CIM • Better ways to examine the data • Concatenated all viral genomes together to make a new artificial chromosome (which they call chromosome 29) • New algorithms to detect novel junctions (caused by inter- and intra-chromosomal translocations) • Copy number variation tool added 611A OP64055 chr15 24.164 24.169 24.174 24.179 24.184 24.189 24.194 24.199 24.204 MB ● ● reverse forward 1 chr15 PWRN2 12 1 12 0 206 13 1 0 0 0 0 11 0 7 1 ● 0 3 2 0 0 ● 2 0 0 12 9 7 ● 0 0 0 1 ● 6 7 0 1 0 5 0 23 0 29 18 ● ● 1 ● ● 0 ● 8 9 Human_papillomavirus_type_16_1 10 6 12 0 117 0 6 0 0 6 2 1 23 2 5 12 0 4 2 8 0 ● ● ● ● 20 9 0 5000 B 16 ● ● ● ● ● ● ● ● ● MB 70.757 70.762 70.767 70.772 0 3 0 452301 00514 8 50 817 14 00 14315 0 5 24 6 00 14 982 11 020 451 023 012 0 17 15 1 04 63 314 12 0 111 3 0060 0749 13 0 0 80440 023 90010 15101 013 3 014 20 17 9 61 20310 4 0 140 1 5170 00 165500016 0724 0 94 03912 1 60 0019 10 0 4050070020012 011 70 23 002 012 15 240 22 1019 015215 23 1093 8 24 0 010 726660 23 000 15 013 2 16 0 011 52010 23 0521 815 10 017 0 0423 012 12 17 0 0 11 0 18 17 00000013 010 6 0020 300101 10 810016 14 00 10 021 8 320 0915 0830911 00 16 21 070012 0 0400 413 80260010 213 23 11 00 10 6 00000 0 00 5 0 0 5 14 12 0 0 2 7 100 2 8 4 2 0 8011 11 5 20 3 3 0 3 9 4 8 14 13 16 0 16 0 0 23 0 1 2 0 0 8 0 15 19 10 10 0 0 2 0610 21 5611 22548 12 013 0 16 0 018 010 0 0 012 0 00600012011 28000 01 111 00 11 23 30011 4000060 516 11 00 12 21 0 0 0 4000011 3 14 15 6 660 0 5 3 0 23 0 18 5 0 0 9 0 4 0 1 0 0 3 0 0 9 0 0 4 14 1 23 1 0 5 14 0 0 0 0 3 12 0 11 0 9 11 0 1 5 5 17 0 0 0 0 8 016 0 017 20 15 2060010 02 080930011 00032011 0 400017 011 2014 00 8000 6510 2 23 0 60400201 10 4 017 21 11 0 0 0 2 1 5 0 11 5 17 10 8 10 0 9 4 0 18 0 5 4 0 0 0 0 8 8 1 14 2 6 0 9 0 6 2 17 1 1 0 20 6 0 0 4 0 5 15 8 0 0 6 9 11915 17 12 0000023 0 12 00012 023512 0631023 14 014 08 18 2 20 011 24 03 020 6010 0024 20 009012 20 0416 000300 10 40018 95024 0 0 10 009240 300 1 18 11 05 0900040 20 016 04 016 05 323 20 0 0 180013 10 1 024 1 13 1 0011 11 10 21 12 4 21020 19 15 21 57 0 500 14 5 23 100410 0 0022 20 01 000 10 011 6019 81 00307015 016 2 0 705030 17 30 21 01418 00 0610 505 19 02 22 2 23 30100 019 10 40 9 0 10 13 14 01012 480122 0611 60 0 15 00 0013 018 02 18 17 6 210 000960 22 1563020 12 11 041 0 0010 17 016 50 0 7 14 112 47 0 18 40 81018 07 19 18 0 7 5 0 4 2 00000 01 3 6 15 8 4 0 2 4 1 7 0 0 0 5 0 13 2 6 20 0 6 8 0 0 1 24 8 2 5 5 8 0 0 18 54 10 55020 0 20 1 9 0 6 2 5 2 0 0 013 912 400 6 6011 2000015 011 014 3516 0 08020 18 21 14 00040022 01 15 705000000 0 10 2 80042 00 7 037 5 50002200017 510 23 7003 60 0 303 0 60015 13 6 015 3 00100307 60 00 14 60023 106 00 12 3 0 21 0 18 096 10 02010 1023 010 0016 15 11 2 00911 00 4703 0 013 00910 016 509017 6 071012 00 86 211 0000796814 0 0 0 8 211 2 8 5 0 21 10 12 4 0 0 4 0 0 0 0 3 0 2 0 0 14 15 1 3 0 0 4 1 12 00012 0919 0 14 2022 18 18 09 23 019 10 5 43011 0911 11 0197118 5015 18 803 6 00606 00 014 0319 70 4 2013 220 04 013 0 15 3 516 000217 5 0 0 1 18 21 0 4 0 0 0 3 8 9 3 6 0 11 0 6 0 3 0 7 11 0 46 5 0 13 1 14 0 6 7 1 11 6 16 0 1 11 0 2 0 24 15 0 12 0 0181 65608 12 17 07 15 13 0 1 15 0 41 4 20 6 0 6020 0 7 62 1000 6808 12 12 3 021 0 0018 20 415 00 0400235 00011 30 5 19 15 00 39086 050002 20 181 23120051 3 58 5 4 00018 14 800603 23 08521 00 0 700 012 23 60 00 08230 0011 0520711 11 0000 20 0 2 0 0 019 0090 12 00012 017 612 022 13 01229 02 00217 2 07 610 14 1 14 17 72 716 4815 13 001 0 019 0 13 608008 016 1 7040000100 5 02 13 13217 03 0 8512 17 1 012 12 323 0820117 00 6 002 23 52 00 09 012 014 2 10 402115 75 13 21 14 5 0010 0011 780611 12 13 05115 3112 07 33 21 12 1 0 0 15 11 14 4 11 5 0 12 12 4 1 5 5 1 97150 15 0 10 0 9 9 18 1 0 21 12 0 0 0 16 3 12 0 11 40011 1 4 16 0 0 4 0 2 10 0 2 3 0 18 02 30906 8 5 80296 300 23 104 11 8 0 60 012 513 6117 00 0 14 10 620 014 023 20 11 11 0060 619 16 15 06 19 13 12 1 100 20120 70016 4 215 1303012 020 12 0 10 22 420 23 312 0113 22 11 3712 024 21 6 13 615 000 19 916 019 0918 013 31017 15 611 0 0 1 0355014 2300 00 0 4 330115 02 8 0820 2046 0 12 0 17 0 3 80 19 8 4 7 0 0 1 6 22 22 0 2 5 0 0 0 0 10 3 0 5 0 8 0 14 2 14 1 22 09112 3 18 0 10 1 0 0 0 0 5 4 20 2 2 0 2 2 21 1 0 0 0 0013 7 018 11 016 0 10 03012 10 4 11 18 012 024 0 5170010 5000 112 511 90 000412 12 13 8500904010 0022 00 80 040 12 8316 090 0 0 0 14 15 0 16 1 2 4 0 8 20 1 0 2 10 15 14 0 0 5 0 0 11 3 0 0 1 0 0 0 0003 3 18 2230 00000 19 0017700080 2 1 01614 8523 20 09 116 20 010 026 011 23 00315 0015 20 825 0000 14 0 12 550011 12 01 16 18 06 018 021 0 8 050 80 016 6 01 0018 20 2010 8 7 0010 000 000 04 012 20 20 517 023 15 830 10 0 000019 00 10 20 3 40 44121 00 17 015 0 02 412 1 00 120 55012 0020 13 11 0 18 0200 00 2013 08 00 0 315 09 6008230 0 12 00571 3 0 200 20 018 005916 40 23 14 010 1412 22 006 070 23 2018 60177 040 06311 20 06 24 00 012 01 012 610 008 020 00 00310 3 350 10 19 9 010 0 092 0 11 61800 224 4 010 18 80004010 12 10 0 9024 63110 0 17 52 20 2 412 601 700 00 2010 024 0000 15 91 230 814 000500020 002 030 15 6 04 0 0005311 00 3 089013 5013 02 1 014 12 050 12 60014 022012 411 9 10 0 8 0 0 5 0 0011 0 4 0 0 0 16 0 23 0 0 0 13 7 17 0 0 2 1 0 4 1 1 2 5 000 10 2 13 5 8 11 0 14 6 20 23 2 0 11 0 10 15 011 00561 09311 10 209 03 23000000 06 34 00 00218 814 006 015 80 14 20 121 050 000 18 18 0012 0 024 18 19 07 12 5 40 0 0 210 9 20 0 1 14 8 8 0 7 12 6 17 0 8 2 0 8 1 14 20 0 14 21 20 18 16 3 0 0 12 0 3 0 5 0 1 15 3 6 0 0 20 0 0 12 0 0 0 0 216 031 05 0 13 000 0514 25011 3 000500 0 920 16 10 80 0000 20 016 00018 0511 5423 100 2221 05 20310719440 016 0913 006 10 00 1030 20010 2 020 016 018 2 2 00 11 00 018 15 80815 11 03 14 015018 00014 13 00 400 2014 012 12 342 00 8 1 4060918 18 014 0 0003379 17 6 3 00110 4015 0 110 0010 0004 000812 14 00111 306 16 0019 61013 053 11 000 7 12 18 066018 02010 011 0613 061 9 000016801 19 0 11 011 08 14 823 16 17 2 00 80001000 3 012 1 06 3 0 0004 0 003 040179 14 1 1 0 10 22 0 0 9 12 1 6 0 0 18 0 1 1 0 8 16 3 1 0 14 0 0 9 0 0 0 13 0 0 0 15 2 0 0 0 6 5 9 0 19 0 21 0 005001500504 810016 023 103 06 17 00211 614 14 19 13 15 0 102 16 6013 0 21 12 05 6 0 07 0 3 090622 32030 63 1610 02 0 12 000022 0 13 0 9 23 1 0 119 81 00 5 02412 1217 122 111019 154 2007414 400 0000 012 16 15 16 0 03 10264 312 011 00015 0 032 0300 116 70.777 25x 70.782 70.787 70.792 70.797 Human_papillomavirus_type_16_1 GRCh38_Viral (15;29)(q11.2;NA) BIMAv3 Validation of Integration Events • Analyze all the mate-pairs indicating a potential HPV integration event • Construct PCR primers as close to the putative integration as possible • Optimize PCR to generate a single fragment • Sanger sequence to validate Fig. 1 Patient 4T Patient 4T Human chr14q33 Integration site HPV16 E1 Human chr12p13 Integration site HPV16 E5 Patient 17T Patient 10T Human chr1p36 Integration site HPV16 E6 Human chr4q22 Integration site HPV26 L2 Validated HPV integrations in OPSCC Patient ID HPV HPV bridged coverage Validated Chr location Genes or adjacent genes HPV integration region 621T HPV26+ 54 4q22.3 PDLIM5 HPV26 L2 601T HPV16+ 1038 14q24.3 5' c-FOS…..3' JDB2 HPV16 E1(nt@1707) 601T HPV16+ 1038 12p13.31 5' LTBR…..3' CD27-AS1 HPV16 E5(nt@3916) 614A HPV16+ 3040.7 2q24.2 5' ITGB6……… 3' RBMS1 HPV16 E1(nt@1693) 687C HPV16+ 2963.8 1p36.11 5' WASF2…….. 3'AHDC1 HPV16 L2 (nt@4580) 687C HPV16+ 2963.8 2p16.3 FOXO11……. 3'FOXN2 HPV16 E6(nt@219); L1(nt@7650) 687C HPV16+ 2963.8 4q22.1 5' CCSER1…….3' GRID2 HPV16L6 (nt@474) 687C HPV16+ 2963.8 8p23.2 CSMD1 HPV16 L2 (nt@5032) 721A HPV16+ 4360.8 16q22.1 HSF4 HPV16E1(nt@1350) +/- 677T HPV16+ 48 1p3611 PADI2…….PADI1 HPV16 E6(nt@441) 688B HPV16+ 82.7 7q31.1, 7q36.3 FOXP2(7q31.1) HPV16L1 (nt@7022) 655B HPV16+ 89.8 4q34.3 5'LOC285500 isoform X3…….3' teneurin-3 HPV16L1 (nt@6059) Results • • • • • • Only 8/28 (30%) of HPV-positive OPSCCs had HPV integrated. 0/12 integration events occurred in HPV E2 6/8 OPSCCs with HPV integration had a single integration. One had two HPV integrations and one had 4. Some samples had HPV integration but still a high episomal copy number of HPV also present HPVs role in OPSCC may be very different from its’ role in cervical cancer. Most OPSCCs are driven by HPV in the episomal form! Not all HPV-positive OPSCCs are the same What Else Does Mate-Pair Sequencing Give You? • Sequencing just 3-5 Gbs of an MP-seq library still provides detailed information about changes in copy number across a cancer genome. Much higher resolution than aCGH • Also identifies inter- and intra-chromosomal translocations. Each OPSCC had between 10 and 70 novel junctions from translocation events MP-Seq and Translocations • Examine data for inter- and intrachromosomal translocations • Each sample had multiple such alterations. Range from 9-70 • Where do these occur? • What genes are at or near such events? Translocations and Common Fragile Sites • Of the 284 chromosomal translocation events that occur with high to mid confidence, 146 (51.4%) occur in or directly adjacent to bands containing common fragile sites CSMD1 • 4 of the 14 tumor samples have either HPV16 integration or an intra-chromosomal translocation at CSMD1 • CSMD1- CUB and sushi multiple domain gene, 2 Mbs gene, 3rd largest human gene • Located at 8p23.2 (same band as FRA8C) • Loss of CSMD1 associated with poor prognosis in CRC. Exhibits antitumor activity through activation of the Smad pathway Other Big Genes With Multiple Translocation Events – PDE4D – LRP1B – LARGE – PTPRD – PTPRG 794,083 bases 1,900,279 bases 760,616 bases 1,718,478 bases 736,045 bases 5q11.2 Near FRA2K Near FRA22B 9p24.1 Near FRA3B Digital Droplet PCR (ddPCR) • Powerful technology to identify rare events (for example, RainDance can produce 10 million droplets). • Circulating tumor DNA in the blood is representative of the state of a growing tumor. Post surgery this clears rapidly (if the tumor is completely excised). • Liquid biopsy to measure proportion of tumor DNA in blood (by measuring a tumor-specific marker, such as a translocation detected by mate-pair sequencing). Problem with ddPCR for cancer screening • Most cancers are not like CML (where 85% of them have the BCR-ABL translocation), or colorectal cancer (where 80% have a specific mutation in K-ras) • Difficult to find a small number of alterations (either mutations and/or translocations) for detecting unknown cancers Problem with ddPCR for cancer screening • Most cancers are not like CML (where 85% of them have the BCR-ABL translocation), or colorectal cancer (where 80% have a specific mutation in K-ras) • Difficult to find a small number of alterations (either mutations and/or translocations) for detecting unknown cancers Solution? • Identify cancer- and patient-specific alterations first • Use 3-5 Gbs of MP-Seq. • Identifies novel junctions • Also may give information about that specific cancer • Each OPSCC had many alterations which would be ideal of ddPCR ddPCR To Monitor Therapy • Identify novel junctions (either HPV integration, translocation or insertion/deletion) • Construct PCR primers for these cancerspecific alterations (also patient-specific) • Do ddPCR on blood samples to monitor patient post-surgery as well as post other treatment modalities Acknowledgements David I. Smith Lab Ge Gao, Ph.D. Otolaryngology Vivian Wang, Ph.D. Kerry Olson, MD Jan Kasperbauer, MD Eric Moore, MD Erik Thorland, Ph.D. Matt Ferber, Ph.D. Nicole Tombers Analysis Sarah Johnson, Ph.D. George Vasmatzis, Ph.D. Anatomic Pathology Joaquin Garcia, MD Radiation Oncology Daniel Ma, M.D.