Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
ALGEBRA 1 LESSON 9-3 Multiplying Binomials (For help, go to Lesson 9-2.) Find each product. 1. 4r(r – 1) 2. 6h(h2 + 8h – 3) 3. y2(2y3 – 7) Simplify. Write each answer in standard form. 4. (x3 + 3x2 + x) + (5x2 + x + 1) 5. (3t3 – 6t + 8) + (5t3 + 7t – 2) 6. w(w + 1) + 4w(w – 7) 7. 6b(b – 2) – b(8b + 3) 8. m(4m2 – 6) + 3m2(m + 9) 9. 3d2(d3 – 6) – d3(2d2 + 4) 9-3 ALGEBRA 1 LESSON 9-3 Multiplying Binomials Solutions 1. 4r(r – 1) = 4r(r) – 4r(1) = 4r 2 – 4r 2. 6h(h2 + 8h – 3) = 6h(h2) + 6h(8h) – 6h(3) = 6h3 + 48h2 – 18h 3. y2(2y3 – 7) = y2(2y3) – 7y2 = 2y5 – 7y2 5. 3t3 – 6t + 8 + 5t3 + 7t – 2 8t3 + t + 6 4. x3 + 3x2 + x + 5x2 + x + 1 x3 + 8x2 + 2x + 1 6. w(w + 1) + 4w(w – 7) = w(w) + w(1) + 4w(w) – 4w(7) = w2 + w + 4w2 – 28w = (1 + 4)w2 + (1 – 28)w = 5w2 – 27w 7. 6b(b – 2) – b(8b + 3) = 6b(b) – 6b(2) – b(8b) – b(3) = 6b2 – 12b – 8b2 – 3b = (6 – 8)b2 + (–12 – 3)b = –2b2 – 15b 9-3 ALGEBRA 1 LESSON 9-3 Multiplying Binomials Solutions (continued) 8. m(4m2 – 6) + 3m2(m + 9) = m(4m2) – m(6) + 3m2(m) + 3m2(9) = 4m3 – 6m + 3m3 + 27m2 = (4 + 3)m3 + 27m2 – 6m = 7m3 + 27m2 – 6m 9. 3d2(d3 – 6) – d3(2d2 + 4) = 3d2(d3) – 3d2(6) – d3(2d2) – d3(4) = 3d5 – 18d2 – 2d5 – 4d3 = (3 – 2)d5 – 4d3 – 18d2 = d5 – 4d3 – 18d2 9-3 ALGEBRA 1 LESSON 9-3 Multiplying Binomials Simplify (2y – 3)(y + 2). (2y – 3)(y + 2) = (2y – 3)(y) + (2y – 3)(2) Distribute 2y – 3. = 2y2 – 3y + 4y – 6 Now distribute y and 2. = 2y2 + y – 6 Simplify. 9-3 ALGEBRA 1 LESSON 9-3 Multiplying Binomials Simplify (4x + 2)(3x – 6). First (4x + 2)(3x – 6) Outer Inner Last = (4x)(3x) + (4x)(–6) + (2)(3x) + (2)(–6) = 12x2 – = 12x2 – The product is 12x2 – 18x – 12. 9-3 24x + 18x 6x – 12 – 12 ALGEBRA 1 LESSON 9-3 Multiplying Binomials Find the area of the shaded region. Simplify. area of outer rectangle = (3x + 2)(2x – 1) area of hole = x(x + 3) area of shaded region = area of outer rectangle – area of hole = (3x + 2)(2x – 1) –x(x + 3) Substitute. = 6x2 – 3x + 4x – 2 –x2 – 3x Use FOIL to simplify (3x + 2) (2x – 1) and the Distributive Property to simplify x(x + 3). = 6x2 – x2 – 3x + 4x – 3x – 2 Group like terms. = 5x2 – 2x – 2 Simplify. 9-3 ALGEBRA 1 LESSON 9-3 Multiplying Binomials Simplify the product (3x2 – 2x + 3)(2x + 7). Method 1: Multiply using the vertical method. 3x2 – 2x + 3 2x + 7 21x2 – 14x + 21 Multiply by 7. 6x3 – 4x2 + 6x Multiply by 2x. 6x3 + 17x2 – 8x + 21 Add like terms. 9-3 ALGEBRA 1 LESSON 9-3 Multiplying Binomials (continued) Method 2: Multiply using the horizontal method. (2x + 7)(3x2 – 2x + 3) = (2x)(3x2) – (2x)(2x) + (2x)(3) + (7)(3x2) – (7)(2x) + (7)(3) = 6x3 – 4x2 + 6x + 21x2 – 14x + 21 = 6x3 + 17x2 – 8x + 21 The product is 6x3 + 17x2 – 8x + 21. 9-3 ALGEBRA 1 LESSON 9-3 Multiplying Binomials Simplify each product using any method. 1. (x + 3)(x – 6) 2. (2b – 4)(3b – 5) x2 – 3x – 18 6b2 – 22b + 20 3. (3x – 4)(3x2 + x + 2) 9x3 – 9x2 + 2x – 8 4. Find the area of the shaded region. 2x2 + 3x – 1 9-3 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases (For help, go to Lessons 8–4 and 9-3.) Simplify. 1. (7x)2 2. (3v)2 3. (–4c)2 4. (5g3)2 Multiply to find each product. 5. (j + 5)(j + 7) 6. (2b – 6)(3b – 8) 7. (4y + 1)(5y – 2) 8. (x + 3)(x – 4) 9. (8c2 + 2)(c2 – 10) 10. (6y2 – 3)(9y2 + 1) 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases Solutions 1. (7x)2 = 72 • x2 = 49x2 2. (3v)2 = 32 • v2 = 9v2 3. (–4c)2 = (–4)2 • c2 = 16c2 4. (5g3)2 = 52 • (g3)2 = 25g6 5. (j + 5)(j + 7) = (j)(j) + (j)(7) + (5)(j) + (5)(7) = j2 + 7j + 5j + 35 = j2 + 12j + 35 6. (2b – 6)(3b – 8) = (2b)(3b) + (2b)(–8) + (–6)(3b) + (–6)(–8) = 6b2 – 16b – 18b + 48 = 6b2 – 34b + 48 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases Solutions (continued) 7. (4y + 1)(5y – 2)) = (4y)(5y) + (4y)(–2) + (1)(5y) + (1)(–2) = 20y2 – 8y + 5y – 2 = 20y2 – 3y – 2 8. (x + 3)(x – 4) = (x)(x) + (x)(-4) + (3)(x) + (3)(–4) = x2 – 4x + 3x – 12 = x2 – x – 12 9. (8c2 + 2)(c2 – 10) = (8c2)(c2) + (8c2)(–10) + (2)(c2) + (2)(–10) = 8c4 – 80c2 + 2c2 – 20 = 8c4 – 78c2 – 20 10. (6y2 – 3)(9y2 + 1) = (6y2)(9y2) + (6y2)(1) + (–3)(9y2) + (–3)(1) = 54y4 + 6y2 – 27y2 – 3 = 54y4 – 21y2 – 3 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases a. Find (y + 11)2. (y + 11)2 = y2 + 2y(11) + 72 = y2 + 22y + 121 Square the binomial. Simplify. b. Find (3w – 6)2. (3w – 6)2 = (3w)2 –2(3w)(6) + 62 = 9w2 – 36w + 36 Square the binomial. Simplify. 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases Among guinea pigs, the black fur gene (B) is dominant and the white fur gene (W) is recessive. This means that a guinea pig with at least one dominant gene (BB or BW) will have black fur. A guinea pig with two recessive genes (WW) will have white fur. The Punnett square below models the possible combinations of color genes that parents who carry both genes can pass on to their offspring. Since WW is 1 of the outcomes, the probability that a guinea 4 pig has white fur is 1. 4 B B W BB BW W BW WW 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases (continued) You can model the probabilities found in the Punnett square with the expression ( 1 B + 1 W)2. Show that this product gives the same result 2 2 as the Punnett square. (12 B + 12 W)2 = ( 12 B)2 – 2(12 B)( 12 W) + ( 12 W)2 1 1 1 = 4 B2 + 2 BW + 4 W 2 Square the binomial. Simplify. The expressions 1 B2 and 1 W 2 indicate the probability that offspring will 4 4 1 have either two dominant genes or two recessive genes is . The 4 expression 1 BW indicates that there is 1 chance that the offspring will 2 2 inherit both genes. These are the same probabilities shown in the Punnett square. 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases a. Find 812 using mental math. 812 = (80 + 1)2 = 802 + 2(80 • 1) + 12 Square the binomial. = 6400 + 160 + 1 = 6561 Simplify. b. Find 592 using mental math. 592 = (60 – 1)2 = 602 – 2(60 • 1) + 12 Square the binomial. = 3600 – 120 + 1 = 3481 Simplify. 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases Find (p4 – 8)(p4 + 8). (p4 – 8)(p4 + 8) = (p4)2 – (8)2 = p8 – 64 Find the difference of squares. Simplify. 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases Find 43 • 37. 43 • 37 = (40 + 3)(40 – 3) Express each factor using 40 and 3. = 402 – 32 Find the difference of squares. = 1600 – 9 = 1591 Simplify. 9-4 ALGEBRA 1 LESSON 9-4 Multiplying Special Cases Find each square. 1. (y + 9)2 2. (2h – 7)2 4h2 – 28h + 49 y2 + 18y + 81 3. 412 4. 292 1681 5. Find (p3 – 7)(p3 + 7). 841 6. Find 32 • 28. p6 – 49 896 9-4