* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download DIMENSIONS
Survey
Document related concepts
Transcript
Sandro Rusconi (09.03.52) 1972-75 School teacher (Locarno, Switzerland) 1975-79 Graduation in Biology UNI Zuerich, Switzerland 1979-82 PhD curriculum UNI Zuerich, molecular biology 1982-84 Research assistant UNI Zuerich 1984-86 Postdoc UCSF, K Yamamoto, (San Francisco) 1987-93 Principal Investigator, UNI Zuerich, PD 1994-today Professor Biochemistry UNI Fribourg 1995-today Director Swiss National Research Program 37 'Somatic Gene Therapy' 2002-03 Sabbatical, Tufts Med. School Boston and Univ. Milano, Pharmacology Department 2002-05 President Union of Societies for *essentielle wiederholung in Swiss Genetik* Experimental Biology (USGEB) *grundkonzepte der Gentherapie* *Klinische experimentiering in SGT* Courmayeur, *Hohe und Tiefe in der SGT* March 2003 *Schlussfolgerungen und Perspektiven* 20 Oktober 2003 Liestal Biovalley UNIFR Rusconi 2003 2003: wohin führt uns Gentherapie? UNIFR Rusconi 2003 *essentielle Wiederholungen in Genetik* UNIFR 1 Gen -> 1 oder mehrere Funktionen 1 Genom -> über Nx100'000 Funktionen DNA RNA Rusconi 2003 Protein Transcription / translation Gene expression GENE 2-5 FUNCTIONS 100 ’000 genes (50 ’000 genes?) >300 ’000 functions (>150 ’000 functions) UNIFR 1 Organismus -> 1013 Zellen, verteilt und spezialisiert in Organe und Gewebe Rusconi 2003 2 mm 2m 0.2mm 0.02mm 0.001mm DNA RNA Protein 1 Cm3 Gewebe 1'000'000'000 Zellen Aber was istr eigentlich 'ein Gen'?: eine regulierbare Nano-machine zur Herstellung von RNA DNA GENE RNA Rusconi 2003 Protein Um wirksam zu sein sollte ein transferierter Gen beinhalten: Transcription / translation FUNCTION Sequenzen fuer Genregulation Signale fuer reifung/transport der RNA Signale fuer Uebersetzung in proteinen RNA DNA spacer UNIFR regulatory coding spacer UNIFR Das reduktionistische Paradigma des Molekularbiologes Rusconi 2003 DNA GENE Protein Gentransfer kann beinhalte: transfer einer neuen Funktion, oder transfer einer kompensierenden F., oder transfer einer interferierenden Funktion FUNCTION(s) GENE OK FUNCTION OK GENE KO FUNCTION KO GENE transfer FUNCTION transfer UNIFR Beispiele von Vererbbare Defekte Rusconi 2003 Polygenic defects (‘ frequent ’) Type estimated min - max genetics behaviour environment Diabetes poly 1 - 4% Hyperurikemia Multi defects 2 - 15 % Monogenic estimated Glaucoma poly 1 - 2% (‘ rare ’) min - max Displasia Multi 1 - 3% Cystic fibrosis, muscular dystrophy Hypercolesterolemia Multi 1 - 5% immodeficiencies, metabolic diseases, all together Syn-& Polydactyly poly 0.1 - 1% Hemophilia... 0.4 - 0.7% Congenital cardiac defects Multi 0.5 - 0.8 % Manic-depressive psychosis Multi 0.4 - 3% Predispositions Type estimated Miopy poly 3 - 4% min - max Polycystic kidney poly 0.1 - 1% Multi 7 - 27 % Psoriasis Multi (*) 2 Alzheimer - 3% Ergo: Multi 1 - 3% Schizofrenia Multi (*) 0.5Parkinson - 1% Multi 4 - 8% Scoliosis Multi 3 Breast - cancer 5 % einen Defekt Jedermann ist Träger von (*) mindestens (*) Colon Carcinoma Multi 0.1 - 1% Viele Defekte manifestieren sich erst spät im Leben (Anfälligkeiten) (*) Obesity Multi 0.5 - 2% Alcolholism/ drug addiction Infektionsresistenz Multi 0.5 3% etc...) Einige Anfälligkeiten sind (*) positiv (langlebigkeit, Sum of incidences (all defects) min - max 32 - 83% UNIFR Das genom ist nicht das einzige determinant des gesund-krang gleichgewichtes genetics Muscle distrophy Familial Breast Cancer Sporadic Breast Cancer Lung Cancer Obesity Sogar die heilung von 'erworbene' Artherosclerosis krankheiten kann genetisch bedingt sein: Trauma, Wunde Alzheimer Brüche Parkinson ’s Verbrennungen, Infektionen Vergiftungen Drug Abuse Homosexuality Rusconi 2003 behaviour environment UNIFR Rusconi 2003 *grundkonzepte in der Somatischen Gentherapie (SGT)* UNIFR Die 4 Aeren der molekularen Medizin Rusconi 2003 Eighties Genes as probes Nineties Genes as factories Y2K Genes as drugs 1 2 3 4 5 ok ** ok ** ** 50 10 3000 80 85 90 95 99 1000technologies Y2K+n Post-genomic improvements of former 80 85 90 95 00 Somatische Gentherapie (SGT) Definierung und Anwendungsbereich Rusconi 2003 Chronic treatment Definition of SGT: 'Use genes as drugs': Correcting disorders by somatic gene transfer NFP37 somatic gene therapy www.unifr.ch/nfp37 UNIFR Acute treatment Preventive treatment Hereditary disorders Acquired disorders Loss-of-function Gain-of-function Das Prinzip darf einfach sein, aber der Teufel liegt häufig in den Details... UNIFR Rusconi 2003 There are many things that are simple in principle, like... getting a train ticket... ! try this 5 min before departure and with a group of Chinese tourists in front parking your car... ! try this at noon, any given day in Zuerich or Paris ... counting votes... ! ask Florida's officials ... gene therapy... look at progress in 13 years... UNIFR Rusconi 2003 Pharmakologische Betrachtungen Classical Drugs Mw 50- 500 Daltons Synthetically prepared Rapid diffusion/action Oral delivery possible Cellular delivery: - act at cell surface - permeate cell membrane - imported through channels Can be delivered as soluble molecules Ångstrom/nm size rapidly reversible treatment Protein Drugs Mw 20 ’000- 100 ’000 Da Biologically prepared Slower diffusion/action Oral delivery not possible Cellular delivery: - act extracellularly Nucleic Acids Mw N x 1’000’000 Da Biologically prepared Slow diffusion Oral delivery inconceivable Cellular delivery: - no membrane translocation - no nuclear translocation - no biological import Can be delivered as Must be delivered as soluble molecules complex carrier particles nm size 50-200 nm size rapidly reversible treatment slowly or not reversible Thérapies avec acides nucléiques nécessitent de formulation en micro-particules bien plus complexes que la pharmacologie conventionnelle différent niveau de reversibilité (problème de dosage et de maitrise des effets indésirables Wieso 'somatisch'? UNIFR Rusconi 2003 Germ Line Cells: the cells (spermatocytes and oocytes and their precursors) that upon fertilisation can give rise to a descendant organism Ergo transformation of germ line cells is avoided, to exclude risk of erratic mutations due to insertional mutagenesis Somatic Cells: all the other cells of the body i.e. somatic gene therapy is a treatment aiming at somatic cells and consequently does not lead to a hereditary transmission of the genetic alteration UNIFR Die vier Grundfragen bei der SGT Rusconi 2003 Efficiency of gene transfer Specificity of gene transfer Persistence of gene transfer Toxicity of gene transfer Le variables welche Krankheit? Welches Gen? Welches Vektor? Welches Organ / Gewebe? Welche Transfermethode? Remember! Die drei Transfer-wege bei der SGT: Ex-vivo In-vivo topical delivery UNIFR Rusconi 2003 In-vivo systemic delivery V Examples: - bone marrow - liver cells - skin cells Examples: - brain - muscle - eye - joints - tumors Examples: - intravenous - intra-arterial - intra-peritoneal Die zwei klassen von 'Vektoren': virale / nicht-virale Transfert non viral (transfection) UNIFR Rusconi 2003 A B Nuclear envelope barrier! viral transfer (Infection) direct nuclear shuttling! Effizienz der Transfektion mit rekombinante DNA im vergleich zur Infektion mit rekombinante Viren UNIFR Rusconi 2003 Transfection cells exposed to 1'000'000 particles/cell 12 hours Infection cells exposed to 3 particle/cell 30 min Ergo das gentransfer mittels rekombinante Viren ist ueber 1'000'000-fach effizienter als jene nicht-viral transfer methode kleine Parade von Genransfervektoren Adenovirus Naked DNA Adeno-associated V. Liposomes & Co. Retrovirus (incl. HIV) Oligonucleotides UNIFR Rusconi 2003 UNIFR Rusconi 2003 rekombinante Adenoviren Approaches Advantages / Limitations Generation I 8 Kb capacity Generation I >30 Kb capacity Generation III Adeno can be grown at very high titers, However Do not integrate Generation III Hybrid adenos: Adeno-RV Adeno-AAV Adeno-Transposase Can contain RCAs Are toxic /immunogenic Examples OTC deficiency (clin, ---) Cystic Fibrosis (clin, --- ) Oncolytic viruses (clin, +++) r4ekombinante Adeno-associated-virus (AAV) UNIFR Rusconi 2003 Approaches Advantages / Limitations Helper-dependent production Persistence in the genome permits longterm expression, high titers are easily obtained, immunogenicity is very low, However the major problems are: insertional mutagenesis Small capacity (<4.5 kb) which does not allow to accommodate large genes or gene clusters. Helper independent production Cis-complementing vectors Co-infection Examples Hemophilia A (clin, animal, +++) Gaucher (clin, animal, +++) Brain Ischemia (animal, +++) Cystic fibrosis (animal, +/-) Rekombinante Retroviren (inkl. HIV) UUNIFR Rusconi 2003 Approaches Advantages / Limitations Murine Retroviruses 9 Kb capacity + integration through transposition also in quiescent cells (HIV), permit in principle long-term treatments, however disturbed by: Insertional mutagenesis VSV-pseudotyped RV Lentiviruses ! Gene silencing High mutation rate Low titer of production Self-inactivating RV Combination viruses Examples SCID (IL2R defect, Paris) (clin, +++) Adenosine Deaminase deficiency (clin, +++!!!) Parkinson (preclin, +++) Anti cancer (clin +/-) UNIFR Rusconi 2003 Reine oder komplexierte DNS Approaches Advantages / Limitations Naked DNA injection /biolistic Unlimited size capacity + lower immunogenicity and lower bio-risk of non viral formulations is disturbed by Naked DNA + pressure Naked DNA + electroporation Liposomal formulations Combinations Low efficiency of gene transfer Even lower stable integration Examples Critical limb Ischemia (clin, +++) Cardiac Ischemia (clin, +/-) Vaccination (clin, +/-) Anti restenosis (preclin. +/-) UNIFR Rusconi 2003 Oligonuklotide Approaches Advantages / Limitations Antisense these procedures may be suitable for : Ribozymes/DNAzymes handling dominant defects transient treatments (gene modulation) permanent treatments (gene correction) Triple helix Decoy / competitors Gene-correcting oligos Examples Anti cancer (clin,preclin., +/-) Restenosis (clin, +++) Muscular Distrophy (animal, +++) √! Recap: Limitierungen der heutigen Genvektoren Adenovirus - no persistence - limited packaging - toxicity, immunogenicity Retrovirus (incl. HIV) & AAV - limited packaging - random insertion - unstable genome General - antibody response - limited packaging - gene silencing - random insertion Solutions: - synthetic viruses (“Virosomes”) UNIFR Rusconi 2003 Biolistic bombardment or local direct injection - limited area Electroporation - limited organ access Liposomes, gene correction & Co. - very inefficient transfer General - low transfer efficiency - no or little genomic integration Solutions: - improved liposomes with viral properties (“Virosomes”) UNIFR Rusconi 2003 *klinische Versuche in der SGT* Der klassische klinische Weg: viel Zeit und Geld year event costs U$D 0 Idea 0 2 Cell culture assays 0.5 Mio 5 Pre-clinical tests animal models 2 Mio Clinical phase I 5-20 patients verify side effects 6 Mio Clinical phase II 30-100 patients dosis escalation 12 Mio Clinical Phase III >300- 1000 patients multicentric double blind 80 Mio 7 10 15 16>> Registration / Availability UNIFR Rusconi 2003 This means: assuming 20% of new developments makes it to final registration, the average investment is 300-500 Mio U$D for each approved drug/procedure Vernichten wir mindestens vier Mythen bei der Gentherapie Classical Gene Therapy Image Hereditary disease UNIFR Rusconi 2003 Reality Many acquired diseases can be treated (ex. infections, traumatic lesions, tumors,...) culprit gene must be known 'Short circuit' or symptomatic treatments (ex. neurodeg. conditions with trophic factors) requires 100% efficiency of transfer/expr. Few % sufficient for many diseases (ex. hemophilia, limb ischaemia ...) gene transfer/expression must persist No persistence required in many cases (ex. vaccination, cytotoxic antitumoral factors, restenosis prevention, acute rejection prevention.. UNIFR Trends bei der klinischen SGT experimentierung Rusconi 2003 trials 100 Ergo en dépit de son age la TGS peut compter couramment seulement 1% d'essais en phase III 80 patients As of August 2003: 660 registered protocols 1500 3672 treated patients cancer 60 hered. 40 66% phase I 21% phase I-II 11% phase II 0.8% phase II-III 0.7% phase III II 1000 I-II I 500 vasc. 21% overall still pending Infect. or not yet Initiated ! 20 www.wiley.com/genetherapy 1990 1992 1994 1996 1998 2000 Einige Meilensteine UNIFR Rusconi 2003 Anderson, 1990 1990, 1993, 2000 // ADA deficiency Isner, 1998 Dzau, 1999 F Anderson, M Blaese // C Bordignon Kmiec, 1999 Fischer, 1997, 2000, Critical limb ischemia Dickson, 2000 2000 J Isner († 4.11.2001), I Baumgartner, Circulation 1998 Aebischer, 2000 2002 Kirn, 1998, Restenosis 2000, V Dzau, HGT 1998 2001 1999, Crigler Njiar (animal) 2002 C Steer, PNAS 1999 2000, Hemophilia Intravascular adenoviral agents M Kay, K High in cancer patients: 2000, SCID Lessons from clinical trials A Fischer, Science April 2000 (review) Bordignon, 2000 (ESGT, Stockholm) 2000, correction Apo E4 (animal model) 2002, science 296, 2410 ff) G. Dickson, 2000 esgt, 2002 BBA 2000, correction Parkinson (animal model) P Aebischer, Science, Nov 2000 2001, ONYX oncolytic Viruses D Kirn (Cancer Gene Ther 9, p 979-86) UNIFR Rusconi 2003 *Die hoch- und tief-punkte ... * Zwei besonders frustrierende Faelle: Muskelschwund und Mucoviszidose UNIFR Rusconi 2003 Muscular dystrophy (incidence 1: 3000 newborn males) requires persistence of expression extremely large gene (14 kb transcript, 2 megaBP gene unclear whether regulation necessary unclear at which point disease is irreversible Cystic fibrosis (incidence 1: 2500 newborns) luminal attempts failed because of anatomical / biochemical barrier: no receptors, mucus layer large gene that requires probably regulation requires long term regulation unclear at which point disease becomes irreversible Trotz Isolierung der entsprechenden Genen in 1984 kein geeignetes Vektor keine geeignete Lieferungsmethode Die mesit befuerchtete Nebeneffekte der Gentherapie UNIFR Rusconi 2003 Immune response to vector immune response to new or foreign gene product General toxicity of viral vectors Adventitious contaminants in recombinant viruses Random integration in genome -> insertional mutagenesis (-> cancer risk) Contamination of germ line cells Ergo die Nebeneffekte waren nicht so scvheinbar wenn SGT ineffizient war Heute muessen wir diese Nebeneffekte seriös betrachten 4 bittere Feststellungen aber nur einen Patient bis jetzt direkt an SGT gestorben NY May 5, 1995, R. Crystal: in a trial with adenovirus mediated gene transfer to treat cystic fibrosis (lung) one patient developed a mild pneumonia-like condition and recovered in two weeks. The trial interrupted and many others on hold. UPenn, Sept. 19, 1999, J. Wilson: in a trial with adenovirus mediated gene transfer to treat OTC deficiency (liver) one patient (Jesse Gelsinger) died of a severe septic shock. Many trials were put on hold for several months (years). Paris, Oct 2, 2002, A Fischer: in a trial with retrovirus mediated gene transfer to treat SCID (bone marrow) one patient developed a leukemia-like condition. The trial has been suspended to clarify the issue of insertional mutagenesis, and some trials in US and Germany have been put on hold. Paris, Jan 14, 2003, A Fischer: a second patient of the cohort of 9 comes up with a similar disease than the one reported in october 2002. 30 trials in USA are temporarily suspended UNIFR Rusconi 2003 Der klinische Versuch in Paris X-SCID (A. Fischer, Hôpital Necker) Disease deficiency of the receptor gamma(c) incapacity of maturing lymphocytes severe combined immunodeficiency lethal at 4 months if untreated survival 10 years under sterile conditions Conventional treatments maintenance under sterile condition treatment with antibiotics transplant of matching bone marrow Gene Therapeutical approach explant BM (3-6 month old) select CD34+ transduce with retroviral vector encoding gamma(c) re-infusion, follow-up UNIFR Rusconi 2003 Die Odyssee des klinischen Versuchs in Paris UNIFR Rusconi 2003 Chronology 1998 start treatment of patients 2000 publication results first 2 patients 2001/2002 publication further 8 patients 9 out of 10 responded well, back home, normal life Adverse 1 summer 2002, high WBC in a 36 months patient september 2002, hyper-proliferatory cells with insertion in proximity of LMO2 gene, notification authorities October 2003, public disclosure, chemotherapy, good response, report at ESGT congress. Adverse 2 december 2002, T cell hyper-proliferation in a second, 36 months patient hyper-proliferatory cells also contain insertion of transgene close to LMO2 gene January 2003, notification to authorities, public disclosure, treatment chemotherapy UNIFR Die Fragen Rusconi 2003 Facts in both patients insertion of the transgene in proximity of LMO2 this type of insertion not found in CD34+ cells in these patients LMO2 expression is apparently increased in these patients LMO2 gene already known as proto-oncogene involved in some chromosomal-translocations found in some leukaemias gamma(c) receptor can respond to IL-2, IL-5, IL-7, IL-9, IL-15, Il-21 and ... gamma(c) receptor is therefore itself a pro-proliferatory and anti-apoptotic signaling molecule Questions/hypotheses is this adverse event specific for the disease status? is the transgene contributing to the hyper-proliferatory potential? is the gamma(c) synergising with LMO2? Has there been such an adverse event in the over 20 retrovirally transduced patients treated so far for other diseases? Perspectives if the answers are 'YES' 'NO' 'UNK' good good good bad bad bad bad good not good not good not good not good UNIFR Anhäufung von hoch- und tief-Punkte: ein Rollercoaster! Rusconi 2003 A. Fischer M. Kay high lentivectors in clinics? R. Crystal V.Dzau Adeno I C Bordignon J. Isner ADA mood NIH Motulski report Ergo Low whenever a reasonable cruise speed was achieved, a major adverse event has brought us back square one AAV germline in mice? Adeno III Lentivectors in pre-clinic NFP37 J. Wilson J. Gelsinger 90 91 92 93 94 95 96 97 98 99 00 01 Adverse events in Paris 02 03 Weitere Faktoren die zum schlechten 'Image' der Gentherapie beigetragen haben Naive statements by some good-willing scientists in the early 90ties Not-so-naive statements by not-so-naive scientists in search of fame Huge amount of money that flowed into the research and development that attracted many incompetent researchers. Concomitance with stock-market euphoria (little attention to realism) Reckless statements or misreporting by greedy scientists or company managers to increase the value of their stock options (memorandum by the ASGT on conflict of interest 2000, www.asgt..org) Tendency by the media to spectacularise good news and/or bad news Ergo zuviel geld und spekulation: ein explosiver cocktail, wie beim Sport oder Kunst... UNIFR Rusconi 2003 UNIFR Rusconi 2003 *Conclusions & Perspectives* Schlussfolgerungen UNIFR Rusconi 2003 Grundkonzepte The therapeutic gene transfer in somatic cells must cope with: efficiency, specificity, persistence and toxicity many genes with potential therapeutic value have been identified, and essentially all types of diseases can be treated by gene transfer Vektoren und Modelle There is the choice of a certain number of viral and non viral vectors, none of them being generally applicable Viral vectors have the advantage of efficiency and nonviral vector the advantage of lower toxicity/danger. Viral vectors have the disadvantage of limited packaging and some toxicity, while nonviral vector have the major disadvantage of low efficiency of transfer Klinische Versuche over 600 trials and 3500 patients in 12 years only a handful of trials is now reaching phase III Progress further slowed down by periodical pitfalls QuickTime™ et un décompresseur Sorenson Video 3 sont requis pour visualiser cette image. Perspectiven: SGT wird weiter fortschreiten trotz schwieruigkeiten und unvermeidbare Unfälle UNIFR Rusconi 2003 Grundlage Forschung und 'Vektorologie' the better understanding of gene interactions and networking (functional genomics) could improve the utilisation of gene-based or gene targeted strategies novel paradigms can become available (Si RNA, PNA triplex etc...) specifically integrating gene constructs or artificial chromosomes become more realistic Praeklinische Forschung scaling up to larger animal models (dog and monkey) permits better appreciation of dosage requirements new transgenic models may give improved similarities to human diseases Klinische Forschung Use of recombinant lentiviruses may be imminent Increase of Phase III procedures over the next 5 years First therapeutical applications may be registered within 3-5 years challenge by other emerging therapies Ergo der grösste teil der fehler waren menschliche Fehler Die Huerde koennen bewältigt werden. ...Danke ... und bleiben wir optimistisch UNIFR Rusconi 2003 Biovalley Program Gymnasium Liestal My collaborators at UNIFR Swiss National Research Foundation Danke fuer die aufmerksamkeit und fuer spezielle Fragen, bitte schreiben sie an: [email protected] oder besuchen sie die WEB seite: www.unifr.ch/nfp37 END, let's open the Discussion UNIFR Rusconi 2003 ***Diskussions-slides... UNIFR Rusconi 2002 text ttt Gene therapy in Switzerland: the 30 projects financed by the NFP37 programme (1996-2001) NFP37 Submissions Granted Total requested Granted phase A (96-99) 30 19 32 Mio 7.6 Mio phase B (99-01) 26 18 9 Mio 6 Mio DISEASE ORIENTATION Cancer Acquired disorders Vector development Hereditary disorders Infectious diseases 8 2 5 2 1 10 7 3 4 2 RESEARCH LEVEL Fundamental Preclinical (animal models) Clinical phase I Clinical Phase II Clinical Phase III Ethical/social aspects 10 5 2 0 0 1 7 9 3 1 0 1 UNIFR Rusconi 2003 Nationales Forschungsprogramm 37 NFP37 « somatic gene therapy » www.unifr.ch/nfp37 Please Note the NFP37 represented at most 30% of the Swissbased experimentation in SGT during 1996-2001 The SGT acrobatics: matching vectors / delivery system / disease Chronic Conditions Slow onset of expression acceptable Initiation of the treatment weeks/months/years before 'point of no return' (ex. cystic fibrosis) persisting expression of the transgene or re-administration required (example hemophilia) Usually based on compensation of 'genetic loss-of-function' (permanent regain of function; ex. ADA) Regulation of gene expression often necessary (because of persistence) For some diseases even a small % of tissue transformation is already therapeutic UNIFR Rusconi 2003 Acute Conditions Rapid onset of expression necessary Initiation of the treatment minutes/hours/days before 'point of no return' (ex. brain ischemia) persisting expression of the transgene not required, occasional re-administration (example ischemia) Usually based on augmentation of resident function (transient gain of function; ex. VEGF) Regulation of gene expression not necessary (because of transiency) For most diseases even a small % of transformation is already therapeutic Ergo many divergent variables must be matched for each case an advantage for one purpose becomes a disadvantage for another (viceversa) UNIFR Rusconi 2003 80 70 100% 10 1 20 60 E2/E 4 40 60 80 1900 2000 20 40 60 50 1900 100 Alzheimer’s free % Life expectancy (CH) cancer incidence Die Hauptkrankheit des 21. Jahrhunderts: Veralterung 1920 1940 1960 1980 199 1900 M E3/E4 E4/E4 80 2000 Pas toutes les stratégies de transfert se basent sur un ancrage au hasard Rusconi 2003 Ergo genotoxic non-genotoxic Random integrating vectors UNIFR r-retroviruses r-lentiviruses r-AAV plasmids (low frequency) plasmids + transposase (eg 'sleeping beauty') Specifically integrating vectors Transient, non integrating vectors adenovirus plasmid RNA virus based oligonucleotides (SiRNA, antisense, ribozymes) artificial chromosomes hybrid vectors (HSV-AAV) Phage 31 integrase-based designer integrase Gene correction vectors chimeroplasts (RNA-DNA chimeric oligos) single stranded DNA (homologous recom) Mais un virus c'est quoi? Une machine auto-réplicative extrèmement efficace UUNIFR Rusconi 2003ß 100 nm docking entry disassembly genome replication early genes exp capsid replication E L1 L2 E L1 L2 assembly Spread standard viral genome Etc... late genes exp UNIFR Rusconi 2002 Comment peut-on construire des virus récombinants? rp E L1 L2 rp Wild type genome X Normal target cells E E E E E Recombinant genome Virions E E Packaging cells Normal target cells R-Virions D'autres tecnolgies émergentes entrent en compétition brutale avec la thérapie génique 1. Cell Therapy (Stem cells, SC) identified in many tissues cell transfer could be combined with gene transfer there would be no anatomical barriers for gene transfer Selection /amplification of desired transformants Current limitations of SC Lack of control on differentiation and trans-determination Difficulties in complex organ-reconstruction Future of SC: Increasing number of SC types will be characterised culturing conditions will be perfectioned May replace in vivo gene transfer for treatment of chronic conditions? Rusconi 2003 2. Challengers from the small/medium molecules STI571 (Glivec) anti HER2 (Herceptin) Si RNA? ... 3. Challengers from the biomechanics world V UNIFR bone reconstruction intelligent protheses (stents) micropumps artificial organs La génétique est practiquée depuis de millénaires, la biologie moléculaire seulement depuis 30 ans 100’000 b.C. Empirical genetics 10’000 b.C. Biotechnology 2000 a.d. Molecular biology 2001 a.d, Genomics UNIFR Rusconi 2003 UNIFR When/where/ may be SGT indicated? Rusconi 2003 No existing cure or treatment most monogenic diseases Side effects and limitations of protein injection interleukin 12 (cancer) -> toxic effects and rapid degradation VEGF (ischemias) -> angiomas Factor VIII or IV (hemophilia) -> insufficient basal level Ergo: there are many indications for SGT as stand-alone or as complementary therapy Complement to conventional increases specificity of conventional therapy (cancer) increases efficacy of conventional therapy (hemophilia) Life quality burden of patient costs of enzyme therapy (ex. ADA) burden of daily injections (ex. Insulin) Which vector for which disease category UNIFR Rusconi 2003 Disease Type Most suitable vector Justifications /Issues Chronic Metabolic AAV, Lenti, Adeno III, rretroviruses, repair oligo persistence of expression of the transferred gene, minimize readministration AAV, nonviral, Lenti No rapid expression necessary, persistence required, low toxicity Adeno II, Plasmid, oncolytic recombinant viruses rapid & transient expression of cytotoxic or immunomodulators Adeno II, Plasmid, modulatory oligonucleotides Rapid and transient action required (ex. OTC, Gaucher, Haemophilia, hematopoietic) Local chronic or progressive (ex. CNS, joints, eyes) Solid tumors +/- metastat. (cervical, breast, brain, skin) Trauma or infection (Ischemia, fracture, burn, wound, acute infection, anaphyllaxis) Comparing relevant issues in the two main 'vectorology' sectors (viral versus nonviral) Viral vectors Packaging capacity from 4 to 30 kb problem for some large genes (ex. dystrophin gene or CFTR gene) important toxic load: ratio infectious/non-infectious particles from 1/10 to 1/100 strong immunogenicity: capsid and envelope proteins, residual viral genes contaminants: replication-competent viruses (ex. wild type revertant viruses) Viral amount (titre) obtainable with recombinants (ex. 10exp5 = poor, 10exp10=excellent) Complexity of production (existence or not of packaging cell systems) Emotional problems linked to pathogenicity of donor vectors (ex. lentiviruses) UNIFR Rusconi 2003 Nonviral vectors Packaging capacity not an issue, even very large constructs can be used (example entire loci up to 150 kb) minor toxic load: small percentage of non relevant adventitious materials moderate immunogenicity: methylation status of DNA (example CpG motifs) contaminants: adventitious pathogens from poor DNA purification (ex endotoxins) Amount of DNA molecules is usually not a problem, the other components depends on chemical synthesis No particular complexity, except for specially formulated liposomes no particular emotional problems linked to the nature of the reagents Ergo problems that must be solved to be suitable for clinical treatment and for industrial production are different between viral and non-viral vectors when ignoring thir low efficiency, nonviral vectors appears largely superior UNIFR Rusconi 2003 The THREE missions of medicine Prevention + 'Molecular Medicine' Diagnosis Application of the know-how in molecular genetics to medicine + + Therapy Ideal properties of a systemically delivered non-viral formulation Stability UNIFR Rusconi 2003 Ergo several independent problems must be solved for a nonviral formulation to be Addressability suitable for clinical treatment particle should possess a vascular addressing signature and for industrial production particle should bear a tissue-docking specificity most viral vectors include DNA construct should include tissue-specific regulatory elements many, if not all those properties particle should resist serum inactivation particle should be inert to immune inactivation Efficiency cargo should be protected from cytoplasmic inactivation (ex. lysosomes) cargo should contain nuclear-translocating signals DNA cargo should include genome-integration functions DNA element must be guaranteed to function after genomic integration (no silencing) Other properties Particle should not include immunogenic/toxic surfaces Cargo should not encode immunogenic/toxic products Cargo should include anti-apoptotic functions Public perception problems UNIFR Rusconi 2003 Negative perception of manipulative genetics general aversion of genetic manipulation fear of catastrophic scenarios Confusion with other gene-based and non-gene-based technologies stem cell technology human cloning procedures genetically modified food Deception after excessive promises hopes reinforced by media spectacularisation and over-simplification deception after non-complied deadline *d Why so many cancer trials? UNIFR Rusconi 2002 Better benfit/risk balance and high emotional acceptance (terminal patients, ethical committees) Market potential higher than monogenic diseases (most thereof being orphan diseases) Many more diversified approaches envisageable than in monogenic diseases Much higher number of patients/center than in monogenic diseases *d Ethical dilemmas can sometimes slow down progress and hamper objective appreciations ADA gene therapy 1990-1999 Feeling: It ’s time we face reality, my friends… We ’re not exactly rocket scientists vector « it does not work » ADA gene therapy 2000 « it always worked but we couldn ’t know » The PEG-ADA ethical dilemma has prevented earlier results recognition (Bordignon, ESGT meeting Stockholm, 9.10.2000, Science July 2002 ) UNIFR Rusconi 2002 *d Cancer molecular treatment Example: Oncolytic viruses on the example of ONYX-015 UNIFR Rusconi 2002 A) Normal Adenovirus can propagate in virtually all cells B) ONYX-015 deleted E1B function can propagate efficiently only in P53 -deficient cells (e.g. most cancer cells) Clinical success Head & Neck Cancer Awaiting for further successes (currently in Phase II and III) expected to be useful in combination with conventional therapy ADVANTAGE: the 'drug' has its own dynamics DISADVANTAGE: danger of evolving viruses unclear if it works in adeno-immune patients unclear if if works in immunocompromised patients (chemotherapy) *d Recap: what is a virus ? -> A superbly efficient replicating machine UUNIFR Rusconi 2002 100 nm docking entry disassembly genome replication early genes exp capsid replication E L1 L2 E L1 L2 assembly Spread standard viral genome Etc... late genes exp *d Examples of gene transfer treatments against cancer UNIFR Rusconi 2002 Type of treatment 31% of protocols (very strong potential, low relapse chances) 5 % of protocols (very limited application, laborious, not widely explored) 26 % of protocols (good effect but low bystander and likely relapse) Transfer chemoresistance genes in immune cells Tumor modulation 38% of protocols (strong complementary effect, possible relapse) Transfer of Immuno-attracting functions Instruction of immune cells Immunoprotective Prodrug activation Tumor-specific cytotoxic expression Immunostimulatory percentage of trials (therapeutic potential) examples Directly cytotoxic Restore tumor-suppressor functions down-regulate pro-oncogenic functions *d Gene correction strategies (independent of delivery vectors) UUNIFR Rusconi 2002 Approaches Advantages / Limitations Trans-splicing mRNA All extremely promising approaches which could permit the treatment of dominant defects. They do not require specificity of delivery, and are not subject to gene silencing. Also they would permit from the biosafety point of view germ line correction, However the major issue today is: Ribozymic splicing of RNA Chimeroplasts-induced repair Controversial efficiency of repair Triple-helix-guided repair Homologous recombination Examples Crigler Njiar (animal, +++ 30%) M. Distrophy (animal, +++ 20%) Correction Apo E 4 (animal, +++ 20%) Correction Albino (animal, +/- <1%) *d Gene therapy ‘ FAM ’ (Frequently Asserted Myths…) UNIFR Rusconi 2002 Gene therapy ... Isner, 1998 Kmiec, 2000 1999 Fischer, ...is withdrawing huge public funding ...will be invariably expensive ...is solely targeting hereditary diseases Wrong: 1998: USA < 2% of NIH budget, CH less than 1% of NF budget Wrong: example DNA based vaccination Wrong: Cancer, Cardiovascular, Restenosis, Ischemia, ... ...is based only on a ‘shotgun insertion' Wrong: J. Isner/ I. Baumgartner (ischemia), A. Fischer (SCID), C Bordignon (ADA); M. Kay (Haemophilia, Wrong: Gene(cancer), correction F McCormick …strategies, ...is a dangerous procedure Wrong: 1 death out of >3000 patients ...will be imediately boosted by genomics Wrong: it will take long time to benefit from genomics knowledge ...has not yet proven its therapeutic value