Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Tangl Ferenc (1866-1917) Kezdeményezésére létesült a M. kir. Állatélettani és Takarmányozástani Kísérleti Állomás, melynek 1896-1917 között volt az igazgatója. A M. kir. Állatorvosi Főiskola élettani tanszékét centrummá tette. Kutatási területei az anyagcsere-folyamatok, az egyedi fejlődés energetikája, energiaforgalmi kérdések. Iskolát teremtett maga körül, az orvosok és biológusok számára szilárd természettudományos alapokat rakott le, materialista gondolkodásmódját igyekezett tanítványaiba is beleoltani. Nutrigenomics, nutrigenetics, Mi az? • Táplálkozási genomika: milyen hatással bírnak a táplálékok-tápanyagok a gének expressziójára és/vagy a gének szabályozására? • Táplálkozási genetika: hogyan befolyásolja a különböző emberek genetikai variabilitása azt, hogy táplálkozásuk milyen anyagcsere reakciókat vált ki? Mire használható a nutrigenomika és nutrigenetika? • A szerzett ismeretek együttese alapján megállapítható, hogy egy adott étrend egy adott embernél milyen csak rá jellemző reakciókat válthat ki • Tehát a genetikai status ismerete magasabb szintű individuális étrendi tanácsadásra ad lehetőséget! Miért vagyunk különbözőek? Nézzünk példákat: a DNS metilálása = nutrigenomika Apolipoprotein A1 (APO A1) SNPs: Promotor G75A Transkription Pos-75 5' +1 Promoter G>A 3' ATG FRAMINGHAM STUDY (N = 1500) Nőknél Variáns „A” allél jelenléte esetén = fokozott többszörösen telítetlen zsírsav (PUFA) bevitel növeli a HDL- koleszterin szintet „Wild type” „G” allél jelenléte esetén = fokozott többszörösen telítetlen zsírsav (PUFA) bevitel csökkenti a HDLkoleszterin szintet Férfiaknál ez az interakció hasonló,de gyengébb Ordovas et al. Am J Clin Nutr. 200 Cholesterin ABC APO E APOA HDL APO E APO E LDLR LDLR CYP 7A1 ABC CYP 7A1 hemmen Resorption Gallensäure Az APO E-4 allél káros hatása: csökkenti a lipidek kiáramlását a makrofágokból és neuronokból (Arteriosclerosis, Thrombosis, and Vascular Biology. 1996;16:1250-1255.) © 1996 American Heart Association, Inc. Articles Apolipoprotein E Alleles and Risk of Coronary Disease A Meta-analysis Peter W.F. Wilson; Ernst J. Schaefer; Martin G. Larson; Jose M. Ordovas the Framingham Heart Study, National Heart, Lung, and Blood Institute (P.W.F.W.) and Boston University (M.G.L.), Framingham, and Tufts USDA Nutrition Center, Boston (E.J.S., J.M.O.), Mass. Correspondence to Peter W.F. Wilson, MD, Framingham Heart Study, National Heart, Lung, and Blood Institute, 5 Thurber St, Framingham, MA 01701. E-mail [email protected]. E2 allél-nek jót tesz a pia! E4 allél ne igyon! Nutrigenomics LIPC (máj-lipáz) gén C514T • Fokozott gén-expresszió csökkent HDLcholesterinnel jár és vica versa • Az TT variáns esetén magasabb a HDL-chol., de csak akkor, ha az egyén <30 energiaszázalék zsírt fogyaszt. • Ha több állati zsírt eszik, nála lesz a legalacsonyabb. • A CC és a CT között nem volt különbség • Akkor tehát a mediterrán diéta jó lehet a TT esetén • Ez itt akkor a nutrigenetika és nutrigenomika együttese Katekol-O-metil-transzferáz Val158Met SNP • Lebontja a katekol-ösztrogéneket (4-OH-E2), amelyek az E2 hormonaktív lebontási termékei • A variáns allél homozigóta genotípus esetén az enzim kevésbé aktív, mert a methionin thermolabilis • Fokozott mamma cc rizikó, de csak akkor, ha alacsony folsav és emelkedett homocisztein szint van (Goodman et al.; 2001; PMID: 11577006A) • Tehát folsavpótlással kivédhető a hatás! • Variáns allél esetén jó a teafogyasztás, mert gátlódik a benne lévő protektív polifenolok lebontódása Nutrigenomics! Type of Analysis: Examined Person: Date of birth: FemSensor 40plus E01-313 45-11-25 I. GENOTYPE REPORT Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 Presence Presence of Allele 1 2 of Allele BREAST CANCER RISK – GENERAL AND CONSTRICTED Transforming growth factor beta receptor I TGFB R1 *9A > *6A X 0 Progesterone Receptor PGR G>A Pos.+331 X 0 Androgen Receptor AR short > long alleles X X Vitamin D- Receptor VDR IVS7 +283 G>A (b>B) X X Cytochrome P450 1A1 CYP1 A1 T>C Pos. +3801 X 0 Cytochrome P450 1B1 CYP1 B1 Leu>Val Codon 432 X 0 HORMONE REPLACEMENT THERAPY – RISKS AND BENEFITS Collagen Typ I1 COL1 A1 G>T Pos. 1546 (S>s) 0 X Cytochrome P450 17A1 CYP1 7A1 T>C Pos. -34 X 0 ESR1 IVS1 -401 T>C (p>P) X X VDR IVS7 +283 G>A (b>B) X X F2 G>A Pos.+20210 X 0 F5 Arg>Gln Codon 506 X 0 Estrogen Receptor- Vitamin D-Receptor Prothrombin – Factor 2 Factor 5 Leiden FEMALE LIFESTYLE IMPROVEMENTS Catechol-OMethyltransferase COM T Val>Met Codon 158 0 X Cytochrome P450 1A1 CYP1 A1 Ile>Val Codon 462 X 0 Cytochrome P450 1B1 CYP1 B1 Asn>Ser Codon 453 X X Aromatase CYP1 9A1 C>T Pos. +1558 0 X MethylentetrahydrofolatReductase MTH FR Ala>Val Codon 222 X X Apolipoprotein E APOE Cys>Arg Codon 112 X 0 Apolipoprotein E APOE Arg>Cys Codon 158 X 0 Apolipoprotein A1 APOA 1 G>A Pos. -75 X 0 Type of Analysis: Examined Person: PREMIUM MALE E01-314 E01-314 I. GENOTYPE REPORT 1. ARTERIOSCLEROSIS / LIPID METABOLISM Presence Presence of Allele 1 Allele 2 Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 Apolipoprotein A1 APOA 1 G>A Pos.-75 X Apolipoprotein E APOE Cys>Arg Codon 112 X Apolipoprotein E APOE Arg>Cys Codon 158 X Cholesterol ester transfer protein CETP C>A Pos.-629 X Sterol element binding transcription factor SREB F2 Gly>Ala Codon 595 X Endothelial NO-Synthase NOS3 T>C Pos. -786 Promoter X Endothelial NO-Synthase NOS3 Glu>Asp Codon 298 X Endothelial NO-Synthase NOS3 Ins>Del Intron 4 (VNTR) X Gap junction protein alpha 4 (Connexin 37) GJA4 Pro>Ser Codon 319 X Matrix metalloproteinase 3 (Stromelysin 1) MMP 3 5A>6A Pos.-1171 Paraoxonase 1 PON1 192 Gln>Arg Codon of X X X X X 2. DETOXIFICATION Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 Cytochrome P450 1A1 CYP1 A1 T>C Pos. +3801 Cytochrome P450 1B1 CYP1 B1 Leu>Val Codon 432 Glutathione S-transferase P1 GSTP 1 Ile>Val Codon 105 GST Available > 0 allele M1 3. DRUG METABOLISM (PHARMACOGENETICS) Glutathione S-transferase M1 Presence Presence of Allele 1 Allele 2 X X X X Presence Presence of Allele 1 Allele 2 Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 Cytochrome P450 2D6 CYP2 D6 A>del Pos. +2549 (Allele *3) X Cytochrome P450 2D6 CYP2 D6 G>A Pos. +1846 (Allele *4) X Cytochrome P450 2D6 CYP2 D6 T>del Pos. +1707 (Allele*6) X Cytochrome P450 2C9 CYP2 C9 Arg>Cys Codon 144 (Allele *2) X CYP2 Ile>Leu Codon Cytochrome P450 2C9 of X of X X 4. HOMEOSTASIS OF BLOOD CLOTTING (THROMBOSIS) Presence Presence of Allele 1 Allele 2 Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 Factor II / Prothrombin F2 G>A Pos. +20210 X Factor V F5 Arg>Gln Codon 506 X Platelet glycoprotein IIIa (integrin ß 3) ITGB 3 Leu>Pro Codon 33 X Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 Angiotensin converting enzyme ACE Ins>Del Intron 16 X Angiotensinogen AGT Met>Thr Codon 235 X alpha2b-adrenergic receptor ADR A2B Ins>Del Codon 299 X beta1-adrenergic receptor ADR B1 Gly>Arg Codon 389 5. HYPERTENSION of Presence Presence of Allele 1 Allele 2 of X X X 6. INFLAMMATION Presence Presence of Allele 1 Allele 2 Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 Interleukin 6 IL-6 G>C Pos. -174 X X G>A Pos. -1082 X X 7. METABOLISM AND OBESITY Interleukin 10 IL-10 of Presence Presence of Allele 1 Allele 2 Gene Gene Symb ol G Protein beta3-subunit GNB3 Exon 10 C>T Pos. -92 X Methylenetetrahydrofolate reductase MTH FR Ala>Val Codon 222 X Plasminogen Activator Inhibitor PAI1 5G>4G Promoter Neuropeptide Y (Preproneuropeptide) NPY Leu>Pro Codon 7 X beta2-adrenergic receptor ADR B2 Gly>Arg Codon 16 X X beta2-adrenergic receptor ADR B2 Gln>Glu Codon 27 X X beta3-adrenergic receptor ADR B3 Trp>Arg Codon 64 X Polymorphism Allele 1 > Allele 2 of X 8. OSTEOPOROSIS AND FRACTURE RISK Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 COL1 G>T Pos. +1546 (S>s) 9. STEROID METABOLISM / a1 PROSTATE CANCER Collagen Typ I1 Presence Presence of Allele 1 Allele 2 X Presence Presence of Allele 1 Allele 2 Gene Gene Symb ol Polymorphism Allele 1 > Allele 2 Cytochrome P450 17 A1 CYP1 7A1 T>C Pos. -34 X Steroid 5-alpha-reductase type II SRD5 A2 Ala>Thr Codon 49 X Steroid 5-alpha-reductase type II SRD5 A2 Val>Leu Codon 89 X Androgen receptor AR (CAG)n long>short alleles Hereditary prostate cancer gene 2 ELAC 2 (=HP C2) Ala>Thr Codon 541 X Cytochrome P450 1A1 CYP1 A1 Ile>Val Codon 462 X IVS7 +283 G>A of of X Köszönöm a figyelmüket! Development of complex, multifactorial, polygenic diseases, such as metabolic syndrome. Nutrition is primarily focused on health and on the earliest phases of disease pathology. In order to effectively apply dietary strategies to prevent disease or to recover homeostasis, validated early biomarkers of the disease state are needed. Nutrition and pharma (pharmacology) are complementary approaches to apply to metabolic stress or metabolic syndrome. Interestingly, there is considerable overlap between cellular targets for nutritional and pharmacological intervention, such as peroxisome proliferator activator receptor-α or peroxisome proliferator activator receptor-γ, which bind fatty acids and fibrates or fatty acids and thiazolidinediones, respectively. Two strategies of nutrigenomics research. The first strategy will provide detailed molecular data on the interaction between nutrition and the genome, whereas the second strategy might be important for human nutrition, given the difficulty of collecting tissue samples from healthy individuals. The first strategy, typically applied by smaller research groups, will reveal the identification of transcription factors that function as nutrient sensors and the genes they target; elucidation of the signaling pathways involved, and characterization of the main dietary signals; measurement and validation of cell- and organ-specific gene expression signatures of the metabolic consequences of specific micronutrients and macronutrients; elucidation of interactions between nutrient-related regulatory pathways and proinflammatory stress pathways, to understand the process of metabolic dysregulation that leads to diet-related diseases; and identification of genotypes that are risk factors for development of diet-related human diseases (such as diabetes, hypertension, or atherosclerosis) and quantification of their impact. The second strategy is the application of nutritional systems biology to develop biomarkers of early metabolic dysregulation and susceptibility (stress signatures) that are influenced by diet. This strategy requires large consortia, considerable research funding, and excellent multidisciplinary (and possible multinational) collaboration. Genetic susceptibility, environment, aging. Individuals with different genetic susceptibilities are influenced differently during aging since some genes within quantitative trait loci (QTLs) are regulated by environmental influences. The symptoms of T2DM during life will differ depending upon genetic susceptibility (genetic makeup) and the influences of the environment. These influences may change during aging depending upon the genes inherited. See text for details. Mean (±SE) HDL-cholesterol concentrations by APOA1 genotype and polyunsaturated fatty acid (PUFA) intake categories ( , <4%; , 4–8%; , >8% of energy) in women. (Ordovas 2002)