Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Unless otherwise noted, the content of this course material is licensed under a Creative Commons Attribution – Share Alike 3.0 License. Copyright 2007, Robert Lyons. The following information is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. You should speak to your physician or make an appointment to be seen if you have questions or concerns about this information or your medical condition. You assume all responsibility for use and potential liability associated with any use of the material. Material contains copyrighted content, used in accordance with U.S. law. Copyright holders of content included in this material should contact [email protected] with any questions, corrections, or clarifications regarding the use of content. The Regents of the University of Michigan do not license the use of third party content posted to this site unless such a license is specifically granted in connection with particular content objects. Users of content are responsible for their compliance with applicable law. Mention of specific products in this recording solely represents the opinion of the speaker and does not represent an endorsement by the University of Michigan. Viewer discretion advised: Material may contain medical images that may be disturbing to some viewers. Nitrogen Metabolism (and Related Topics) • Amino Acid Metabolism (Nitrogen metabolism) • Folate Metabolism (“One-Carbon pathways”) • Nucleotide Metabolism Dr. Robert Lyons Assistant Professor, Biological Chemistry Director, DNA Sequencing Core There are also PDF’s of class handouts with supplemental information available in the table of contents for this course. Supplementary study material on the Web: http://seqcore.brcf.med.umich.edu/mcb500 Amino Acid met abolism A mino acids Folat e met abolism Met hylene THF Glu, Gln, Asp , NH3 Met Cycle Urea oxaloac et at e Pu r in e s Uric Acid DNA RNA Py r im id in e s ( energy ) f um arat e TCA Cycle Nucleic Acid met abolism Protein Degradation: • Endogenous proteins degrade continuously - Damaged - Mis-folded - Un-needed • Dietary protein intake - mostly degraded Nitrogen Balance - expresses the patient’s current status - are they gaining or losing net Nitrogen? Transaminases Collect Amines General react ion overview: H H R1 C COO NH2 amino acid (-) + (-) R2 C COO O -keto acid (typically alpha-ketoglutarate) R1 C O COO -keto acid (-) + R C COO(-) 2 NH2 amino acid (typically glutamate) Det ails of react ion mechanism: -keto amino acid H R C (-) COO NH2 + O CH H2O P OCH2 OH + CH3 N H pyridoxal phosphate acid H+ H R C (-) COO N CH P OCH2 OH + CH3 N H R C N COO(-) R C N HCH CH P OCH2 OH N CH3 H COO(-) P OCH2 OH + N CH3 H (-) R C COO O + NH2 HCH P OCH2 OH + N CH3 H pyridoxamine phosphate Transfer the amine back to an acceptor -keto acid P O CH NH O H CH CH OH CH N H pyridoxamine phosphate + R C P O CH COO O -keto acid H OH CH N H pyridoxal phosphate + R C NH amino acid COO In peripheral tissues, transaminases tend to form Glutamate when they catabolize amino acids In other words, alpha-ketoglutarate is the preferred acceptor, and Glutamate is the resulting amino acid: Some amino acid + -ketoglutarate some alpha keto acid + Glutamate Glutamate can donate its amines to form other amino acids as needed A specific example - production of Aspartate in liver (described a few slides from now): Glutamate + oxaloacetate -ketoglutarate + aspartate Ge t t ing A m ine s Int o t he Liv e r Glutamate Dehydrogenase: Glutamine Synthetase: H OCCHCH C CO NH glutamate NAD(P) H OOC C CHCH COO NH glut amat e (mito) NAD(P)H ATP NH OCCHCH C CO O -ketoglutarate ADP P + NH ammonia H O OOC C CH CHC NH NH glut amine . In t he Liv e r: Pre curse rs f or Ure a Cy cle Glut amine is hydrolyzed t o glut amat e and ammonia: H O OOC C CH CHC NH NH glut amine H O OOC C CH CHC OH NH HO NH3 glut amat e Ammonia can also be formed by the glutamate dehydrogenase reaction and several other reactions as well. Glut amat e donat es it s amino group t o f orm aspart at e: Glut amat e-aspartat e aminot ransferase: H OCCHCH C CO NH Glutamate . + H OCCHC CO O oxaloacetate OCCHCHC CO O -keto glutarate + H OCCH C CO NH aspartate 2ATP + HCO3+ NH3 1 Carbamoy l phosphat e O (-) NH2C OPO3 Pi 2 2ADP + Pi H (-) OOC C H (-)OOC C CH2CH2CH2NH3(+) NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine Cit rulline Liver mitochondrion Liver cyt oplasm H (-) OOC C H (-) OOC +) CH2CH2CH2NH( 3 C NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine O NH2 C NH2 Urea Cit rulline ATP 3 5 H (-)O CCH C CO(-) 2 2 2 NH2 aspartate AMP + PPi H2O H (-)OOC C CH2CH2CH2NH C NH2 NH NH (+) 2 (+)3 H (-) OOC C NH (+)3 A rginine 4 (-) (-)O C C H 2 H C CO2 Fumarat e H (-)O CCH C CO(-) 2 2 2 NH2 +) CH2CH2CH2NH C NH( 2 A rgininosuccinat e Carb am o y l p h o s p h at e sy n t h e t as e I O HO C O NH ATP bicarbonate ADP ATP O HO C O P O HO C NH carbonyl phosphate carbamate Pi O P O C NH ADP carbamoyl phosphate O r n it h in e T r a n s c a r b a m o y la s e Carb am o y l p ho s p hat e O NH C OPO P H OOC C H CH CH CHNH CH NH NH O r n it h in e OOC C NH C it r u llin e O CH CH CH NH C NH A r g in in o s u c c in a t e s y n t h e t a s e H (-)O CC C CO(-) 2 2 2 H NH2 aspartate H (-) OOC C NH (+)3 H O CH2CH2CH2NH C NH2 (-) OOC C NH (+)3 Cit rulline ATP AMP + PPi H (-)O CCH C CO(-) 2 2 2 NH2 (+) CH2CH2CH2NH C NH2 A rgininosuccinat e A r g in in o s u c c in a t e ly a s e H (-) OOC C H (-)O CCH C CO(-) 2 2 2 NH2 (+) CH2CH2CH2NH C NH2 H (-) OOC C CH2CH2CH2NH C NH2 NH2 NH3 ( +) (+) NH (+)3 Argininosuccinat e (-)O C C CH CO(-) 2 2 H Fumarat e Arginine A r g in a s e H H (-) OOC C (-) OOC C CH2CH2CH2NH C NH2 NH2 NH3 ( +) (+) A rginine NH (+)3 H2 O O NH2C NH2 Urea CH2CH2CH2NH(3+) Ornit hine 2ATP + HCO3+ NH3 1 Carbamoy l phosphat e O (-) NH2C OPO3 Pi 2 2ADP + Pi H (-) OOC C H (-)OOC C CH2CH2CH2NH3(+) NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine Cit rulline Liver mitochondrion Liver cyt oplasm H (-) OOC C H (-) OOC +) CH2CH2CH2NH( 3 C NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine O NH2 C NH2 Urea Cit rulline ATP 3 5 H (-)O CCH C CO(-) 2 2 2 NH2 aspartate AMP + PPi H2O H (-)OOC C CH2CH2CH2NH C NH2 NH NH (+) 2 (+)3 H (-) OOC C NH (+)3 A rginine 4 (-) (-)O C C H 2 H C CO2 Fumarat e H (-)O CCH C CO(-) 2 2 2 NH2 +) CH2CH2CH2NH C NH( 2 A rgininosuccinat e Urea Cycle Connect s t o TCA Cycle Ornithine H (-)O CCH C CO(-) 2 2 2 NH2 Citrulline Aspartate Urea Urea Cycle Arginine Argininosuccinate Oxaloacetate Malate H -) (-)OC C C CO( 2 2 H Fumarate TCA Cycle -Ketoglutarate Citrate Ge t t ing A m ine s Int o t he Liv e r Glutamate Dehydrogenase: Glutamine Synthetase: H OCCHCH C CO NH glutamate NAD(P) H OOC C CHCH COO NH glut amat e (mito) NAD(P)H ATP NH OCCHCH C CO O -ketoglutarate ADP P + NH ammonia H O OOC C CH CHC NH NH glut amine 2ATP + HCO3+ NH3 1 Carbamoy l phosphat e O (-) NH2C OPO3 Pi 2 2ADP + Pi H (-) OOC C H (-)OOC C CH2CH2CH2NH3(+) NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine Cit rulline Liver mitochondrion Liver cyt oplasm H (-) OOC C H (-) OOC +) CH2CH2CH2NH( 3 C NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine O NH2 C NH2 Urea Cit rulline ATP 3 5 H (-)O CCH C CO(-) 2 2 2 NH2 aspartate AMP + PPi H2O H (-)OOC C CH2CH2CH2NH C NH2 NH NH (+) 2 (+)3 H (-) OOC C NH (+)3 A rginine 4 (-) (-)O C C H 2 H C CO2 Fumarat e H (-)O CCH C CO(-) 2 2 2 NH2 +) CH2CH2CH2NH C NH( 2 A rgininosuccinat e C P S I is S t im u la t e d b y N A G H H OOC C N -a c e t y l CH CH C NH O OH g lu t a m a t e + Co A - C O OOC C CH CH C OH NH g lu t a m a t e s y n t h e t as e O C O CH CH N - a c e t y l g lu t a m a t e a c e t y l Co A ( N A G) ( r e p e a t in g t h e f ig u r e f r o m p a g e 3 o f y o u r h an d o u t ) O HO C O ATP bicarbonate O HO C O P ADP carbonyl phosphate NH O HO C NH Pi ATP carbamate O P O C NH ADP carbamoyl phosphate -Muscle (Amines) Glucose Pyruvate Glutamate Amino acids -ketoglutarate Alanine blood transport Alanine -ketoglutarate Glucose Pyruvate Glutamate Live r Urea NH Complicating the picture: Other tissues may be involved Muscle: Amino acids: Transamination Deamination Alanine purine deamination: (+) Glutamate NH4 Glutamine Intestine: Glutamine (+) Alanine NH4 Glutamine Citrulline Kidney: Citrulline NH3 (+) NH4 Arginine Liver: Arginine Glutamine (+) NH4 Alanine Glu Aspartate Urea Why is Ammonia Toxic? Why is Ammonia Toxic? • Possible neurotoxic effects on glutamate levels (and also GABA) (due to shifting equilibria of reactions involving these compounds) Why is Ammonia Toxic? • Possible neurotoxic effects on glutamate levels (and also GABA) (due to shifting equilibria of reactions involving these compounds) • Possible metabolic/energetics effects: - alpha-ketoglutarate levels - glutamate levels - glutamine 2ATP + HCO3+ NH3 1 Carbamoy l phosphat e O (-) NH2C OPO3 Pi 2 2ADP + Pi H (-) OOC C H (-)OOC C CH2CH2CH2NH3(+) NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine Cit rulline Liver mitochondrion Liver cyt oplasm H (-) OOC C H (-) OOC +) CH2CH2CH2NH( 3 C NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine O NH2 C NH2 Urea Cit rulline ATP 3 5 H (-)O CCH C CO(-) 2 2 2 NH2 aspartate AMP + PPi H2O H (-)OOC C CH2CH2CH2NH C NH2 NH NH (+) 2 (+)3 H (-) OOC C NH (+)3 A rginine 4 (-) (-)O C C H 2 H C CO2 Fumarat e H (-)O CCH C CO(-) 2 2 2 NH2 +) CH2CH2CH2NH C NH( 2 A rgininosuccinat e Inherited Defects of Urea Cycle Enzymes: Diagnosis Defects are diagnosed based on the metabolites seen in the blood and/or urine. CPSD OTCD ASD ALD AD No elevation except ammonia; diagnosed by elimination. Elevated CP causes synthesis of Orotate Elevated citrulline Elevated argininosuccinate Elevated arginine 2ATP + HCO3+ NH3 1 Carbamoy l phosphat e O (-) NH2C OPO3 Pi 2 2ADP + Pi H (-) OOC C H (-)OOC C CH2CH2CH2NH3(+) NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine Cit rulline Liver mitochondrion Liver cyt oplasm H (-) OOC C H (-) OOC +) CH2CH2CH2NH( 3 C NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine O NH2 C NH2 Urea Cit rulline ATP 3 5 H (-)O CCH C CO(-) 2 2 2 NH2 aspartate AMP + PPi H2O H (-)OOC C CH2CH2CH2NH C NH2 NH NH (+) 2 (+)3 H (-) OOC C NH (+)3 A rginine 4 (-) (-)O C C H 2 H C CO2 Fumarat e H (-)O CCH C CO(-) 2 2 2 NH2 +) CH2CH2CH2NH C NH( 2 A rgininosuccinat e C P S I is S t im u la t e d b y N A G H H OOC C N -a c e t y l CH CH C NH O OH g lu t a m a t e + Co A - C O OOC C CH CH C OH NH g lu t a m a t e s y n t h e t as e O C O CH CH N - a c e t y l g lu t a m a t e a c e t y l Co A ( N A G) ( r e p e a t in g t h e f ig u r e f r o m p a g e 3 o f y o u r h an d o u t ) O HO C O ATP bicarbonate O HO C O P ADP carbonyl phosphate NH O HO C NH Pi ATP carbamate O P O C NH ADP carbamoyl phosphate 2ATP + HCO3+ NH3 1 Carbamoy l phosphat e O (-) NH2C OPO3 Pi 2 2ADP + Pi H (-) OOC C H (-)OOC C CH2CH2CH2NH3(+) NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine Cit rulline Liver mitochondrion Liver cyt oplasm H (-) OOC C H (-) OOC +) CH2CH2CH2NH( 3 C NH (+)3 O CH2CH2CH2NH C NH2 NH (+)3 Ornit hine O NH2 C NH2 Urea Cit rulline ATP 3 5 H (-)O CCH C CO(-) 2 2 2 NH2 aspartate AMP + PPi H2O H (-)OOC C CH2CH2CH2NH C NH2 NH NH (+) 2 (+)3 H (-) OOC C NH (+)3 A rginine 4 (-) (-)O C C H 2 H C CO2 Fumarat e H (-)O CCH C CO(-) 2 2 2 NH2 +) CH2CH2CH2NH C NH( 2 A rgininosuccinat e Clinical Management of Urea Cycle Defects • Dialysis to remove ammonia • Provide the patient with alternative ways to excrete nitrogenous compounds: * Intravenous sodium benzoate or phenylacetate * Supplemental arginine carbamoyl phosphate Excreted by kidney O NH2C NH2 Ornithine Citrulline ATP Urea AMP+PP i HO 2 Arginine Aspartate XASD Argininosuccinate Excreted by kidney Dietary Arginine • Levulose - acidifies the gut • Low protein diet XALD Degrading the Amino Acid Carbon Backbone Easily-degraded products after transamination: H (-)O CCH C CO(-) (-)O CCH C CO(-) 2 2 2 2 2 2 t ransaminat ion NH3 O (+) oxaloacetate aspartate H (-)O CCHCH C CO(-) (-)O CCH CH C CO(-) 2 2 2 2 2 2 2 2 t ransaminat ion O NH (+)3 -ketoglutarate glutamate H -) CH3 C CO( 2 t ransaminat ion NH (+)3 alanine -) CH3 C CO( 2 O pyruvate We also already know how to degrade Glutamine: glutaminase Glutamine ----------------> glutamate + ammonia …and by analogy, how to degrade Asparagine: asparaginase Asparagine ---------------> aspartate + ammonia Amino Acids are categorized as ‘Glucogenic’ or ‘ketogenic’ or both. Many amino acids are purely glucogenic: Glutamate, aspartate, alanine, glutamine, asparagine,… Some amino acids are both gluco- and ketogenic: Threonine, isoleucine, phenylalanine, tyrosine, tryptophan The only PURELY ketogenic Amino Acids: leucine, lysine H (-) OOC C CH2CH2CH2NH C NH2 NH NH (+)2 (+)3 Arginine Urea ( via t he urea cy cle) H (-) OOC C Amino acids with 5-carbon backbones tend to form -ketoglutarate NH (+)3 CH2CH2CH2NH(3+) Ornit hine -ket oglut arat e glut amat e H (-) OOC C CH2CH2C NH (+)3 (-) OOC O (+) N H Proline H glut amat e - 5 - semialdehyde (+) NAD(P) NA D(P)H H (-) OOC C CH2CH2C NH (+)3 glut amat e - ket oglut arat e H (-) OOC C O OH O CH2CH2C NH (+)3 NH3 H2O glut amine NH2 Degradation and Biosynthesis of Serine and Glycine (+) NAD Glycine Synthase: H (-) OOC C NH (+)3 CO2 + (+) NH4 H THF Glycine Serine Hydroxymethyltransferase: NADH N5-N10- methylene THF (-) OOC C 2 NH3 (+) H (-) OOC CH NH (+)3 CH2OH THF Serine N5-N10- methylene THF Gly cine (+) NH4 H2O Serine Dehydratase: (-) OOC CH ( NH +)3 CH2OH Serine (-) OOC C CH2 (+) NH3 (-) OOC C CH3 (+) NH2 H2O (-) OOC C O CH3 H CH S CH CH C COO CH NH H CH S CH CH C COO NH ATP + HO Met hionine PPi + Pi O Ad en in e H HH H OH OH S-A denosy l Met hionine Met h yl a cce pt o r te t rah yd ro fo lat e Bi os ynt h et ic Me t hy lat io n re act io n N5 me th yl t et rah yd ro fo la te Methionine Cycle And Biological Methyl Groups * se e e xam pl es Me t hyl at ed acc ep to r H HS CH CH C COO CH NH H HS CH CH C COO NH O Ad en in e H HH H OH OH Homoc y st eine H HO CH C COO NH Serine H HS CH C COO NH Cy st eine (remainder of homocysteine degraded for energy) S-Adenosy l Homoc yst eine Phenylalanine and Tyrosine (Normal pat h shown in black, pat hological react ion shown in red) Tetrahydrobiopterin + O2 Dihydrobiopterin + H2O (+) NH 3 CH2 CH (-) CH2 Enzyme: Phenylalanine hydroxylase Phenylket onuria (no phenylalanine hydroxylase) (-) COO Phenylpyruvat e CH (-) COO Tyrosine Homogent isat e O C NH 3 HO COO Phenylalanine CH2 (+) Deficiency: Alkaptonuria “Ochronosis” Enz yme: homogent isat e dioxy genase (you don’ t need t o know t he rest ) Branched Chain Amino Acids Isoleucine CH3CH2CH CH Leucine (-) COO CH3 NH3 (+) CH3CH CH 2 CH CH3 NH (+)3 Valine (-) COO -KG -KG CH3CH CH CH3 NH3 (+ ) (-) COO -KG --- ------------ - Transaminat ion -------- -------Glu CH3CH2CH C CH3 Glu (-) COO O CH3CHCH 2 C CH3 O + (-) COO Glu CH3CH C CH3 O NAD,+CoASH NAD,+CoASH NAD, CoASH (-) COO --- Branched-chain -ket o acid dehydrogenase - -NADH + CO CH3CH2CH CH3 C O S-CoA NADH + CO2 NADH + CO2 2 CH3CHCH 2 C CH3 O S-CoA CH3CH C S-CoA CH3 O ( cont inues on t o degradat ion pat h similar t o -oxidat ion of fatt y acids) Synt hesis of Bioact ive Amines (+) NH 3 HO CH 2 CH Tyrosin e (-) COO HO Tyrosine hydroxy lase HO HO (+) CH 2CH 2NH 3 HO HO CH 2 (-) COO CH Dih ydroxyp heny lalanin e ( L-DOPA) HO OH (+) CH CH 2NH 3 H Dop am ine (+) NH 3 HO No repine phrine HO OH CH CH 2 N CH 3 H H Ep ineph rine Synthesis of Bioactive Amines CH 2 N CH NH (+)3 Tryp t o ph an (-) COO HO Tryptophan hy droxylase CH 2 CH N NH (+)3 5 -hyd roxyt ryp t o ph an PLP-de pe ndent de cvarboxylat ion (-) COO CO2 HO CH 2 NAD+ N Sero t o nin CH 2 NH (+)3 Synthesis of Bioactive Amines (-) COO CH 2 CH 2 CH (-) COO NH (+)3 Glut amat e N N H CH 2 CH NH (+)3 Hist idine Glutam ate de carboxylase ( PLP-depe ndent ) (-) COO CH 2CH 2 CH2 NH 3 (+) (COO) Hist idine de carboxylase ( PLP-de pe ndent ) -amin ob ut yric acid (GABA) N N H CH 2 CH2 Hist amine NH (+)3 NON-Essential Amino Acids: Glutamate, aspartate, alanine, glutamine, asparagine, (proline), glycine, serine (cysteine, tyrosine) Essential Amino Acids: Arginine (!), phenylalanine, methionine, histidine, Isoleucine, leucine, valine, threonine, tryptophan, lysine