Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 4 Carbohydrates Metabolism § 1 Overview • Carbohydrates in general are polyhydroxy aldehydes or ketones or compounds which yield these on hydrolysis. Biosignificance of Carbohydrates • The major source of carbon atoms and energy for living organisms. • Supplying a huge array of metabolic intermediates for biosynthetic reactions. • The structural elements in cell coat or connective tissues. Glucose transporters (GLUT) • GLUT1~5 GLUT1: RBC GLUT4: adipose tissue, muscle The metabolism of glucose • • • • • glycolysis aerobic oxidation pentose phosphate pathway glycogen synthesis and catabolism gluconeogenesis glycogen Glycogenesis Glycogenolysis starch lactate glucose Lactate, amino acids, glycerol H2O+CO2 Pentose phosphate pathway Ribose, NADPH §2 Glycolysis Glycolysis • The anaerobic catabolic pathway by which a molecule of glucose is broken down into two molecules of lactate. glucose →2lactic acid (lack of O2) • All of the enzymes of glycolysis locate in cytosol. 1. The procedure of glycolysis G glycolytic pathway pyruvate lactic acid 1) Glycolytic pathway : G → pyruvate including 10 reactions. glucose 6-phosphate HO CH2 H H OH O H OH H H OH ATP ADP 2+ Mg Hexokinase OH G P O CH2 H H OH O H OH H OH H OH G-6-P • Phosphorylated G cannot get out of cell • Hexokinase , HK (4 isoenzymes) , glucokinase, GK in liver ; • Irreversible . Comparison of hexokinase and glucokinase hexokinase glucokinase occurrence in all tissues only in liver Km value 0.1mmol/L 10mmol/L Substrate G, fructose, mannose glucose (2) G-6-P → fructose 6-phosphate P O CH2 H H OH P O CH2 O H H H OH OH H O OH G-6-P isomerase CH2OH OH OH H OH H F-6-P (3) F-6-P → fructose 1,6bisphosphate P O CH2 O PFK-1 OH H OH H OH P O CH2 CH2OH H F-6-P H Mg2+ ATP CH2 O P O OH OH H ADP OH H F-1,6-BP • The second phosphorylation • phosphofructokinase-1, PFK-1 (4) F-1,6-BP → 2 Triose phosphates CH2 O P C O HO C H H C OH CH2 O P C O aldolase H C OH CH2 O P F-1,6-BP • Reversible CH2OH CHO + CHOH CH2 O P dihydroxyacetone glyceraldehyde 3-phosphate, phosphate, GAP DHAP (5) Triose phosphate isomerization CH2 O P C O CH2OH DHAP CHO phosphotriose isomerase CHOH CH2 O P GAP G→2 molecule glyceraldehyde-3-phosphate, consume 2 ATP . (6) Glyceraldehyde 3-phosphate → glycerate 1,3-bisphosphate CHO CHOH CH2 O P glyceraldehyde 3-phosphate Pi NAD+ NADH+H + glyceraldehyde 3-phosphate dehydrogenase, GAPDH O C O~ P CHOH CH2 O P glycerate 1,3-bisphosphate, 1,3-BPG (7) 1,3-BPG → glycerate 3phosphate O C O~ P CHOH CH2 O P glycerate 1,3-bisphosphate ADP ATP Phosphoglycerate kinase COOCHOH CH2 O P glycerate 3-phosphate • Substrate level phosphorylation (8) Glycerate 3-phosphate → glycerate 2-phosphate COO- - COO CHOH CH2 O P glycerate 3-phosphate Mutase CH O P CH2OH glycerate 2-phosphate (9) Glycerate 2-phosphate → phosphoenol pyruvate COOCH O P enolase CH2OH glycerate 2-phosphate COOC O ~ P + H2O CH2 PEP (10) PEP →pyruvate COO - C O~ P CH2 PEP ADP ATP pyruvate kinase COOC O CH3 Pyruvate • Second substrate level phosphorylation • irreversible 2) Pyruvate → lactate NADH + H+ COO C O CH3 Pyr NAD+ COO CHOH Lactate dehydrogenase, CH3 LDH Lactic acid Summary of Glycolysis ADP ADP ATP 2+ ATP 2+ Mg Mg F- 6-P F- 1,6-BP G G-6-P HK Isomerase PFK-1 Aldolase lactate NAD+ DHAP GAP LDH H3PO4 NAD+ glyceraldehyde NADH+H+ pyruvate 3-phosphate + NADH+H dehydrogenase ATP pyruvate kinase ADP PEP glycerate 1,3-bisphosphate ADP Enolase ATP Mutase glycerate glycerate H2O 2-phosphate 3-phosphate Phosphoglycerate kinase Total reaction: C6H12O6 + 2ADP + 2Pi 2CH3CHOHCOOH + 2ATP + 2H2O Formation of ATP: The net yield is 2 ~P or 2 molecules of ATP per glucose. 2. Regulation of Glycolysis • Three key enzymes catalyze irreversible reactions : Hexokinase, Phosphofructokinase & Pyruvate Kinase. 1) PFK-1 The reaction catalyzed by PFK-1 is usually the rate-limiting step of the Glycolysis pathway. This enzyme is regulated by covalent modification, allosteric regulation. bifunctional enzyme 2) Pyruvate kinase • Allosteric regulation: F-1,6-BP acts as allosteric activator; ATP and Ala in liver act as allosteric inhibitors; • Covalent modification: phosphorylated by Glucagon through cAMP and PKA and inhibited. ATP Pyruvate Kinase (active) ADP PKA cAMP Glucagon Pyruvate Kinase- P (inactive) 3) Hexokinase and glucokinase • This enzyme is regulated by covalent modification, allosteric regulation and isoenzyme(同工酶) regulation. • Inhibited by its product G-6-P. • Insulin induces synthesis of glucokinase. 3. Significance of glycolysis 1) Glycolysis is the emergency energyyielding pathway. 2) Glycolysis is the main way to produce ATP in some tissues, even though the oxygen supply is sufficient, such as red blood cells, retina, testis, skin, medulla of kidney. • In glycolysis, 1mol G produces 2mol lactic acid and 2mol ATP. § 3 Aerobic Oxidation of Glucose • The process of complete oxidation of glucose to CO2 and water with liberation of energy as the form of ATP is named aerobic oxidation. • The main pathway of G oxidation. 1. Process of aerobic oxidation cytosol first stage G Pyr glycolytic pathway Mitochodria third second stage stage Pyr CH3CO~SCoA CO2 + H2O+ATP TAC 1) Oxidative decarboxylation of Pyruvate to Acetyl CoA - COO NAD+ C O + HSCoA CH3 NADH + H + O Pyruvate dehydrogenase complex pyruvate • irreversible; • in mitochodria. H3C C ~SCoA + CO2 Acetyl CoA Pyruvate dehydrogenase complex: E1 pyruvate dehydrogenase Es E2 dihydrolipoyl transacetylase二氢硫辛酸转乙酰 酶 E3 dihydrolipoyl dehydrogenase二氢硫辛酸脱氢酶 thiamine pyrophosphate, TPP (VB1) HSCoA (pantothenic acid) cofactors lipoic Acid NAD+ (Vpp) FAD (VB2) Pyruvate dehydrogenase complex: HSCoA NAD+ The structure of pyruvate dehydrogenase complex N H3C C N NH2 C HC C C H S N C H2 O- + O- C CH2CH2 O P O P C CH3 O O O- TPP H2 C +2H CH (CH2)4 COOH H2C S H2 C S lipoic acid -2H H2C SH CH (CH2)4 COOH SH dihydrolipoic acid HSCoA 4'-phosphopantotheine OH CH3 HS CH2 CH2 NH C CH2 CH2 NH C C O H O ¦Â-mercaptoethylamine ¦Â-alanine OH OH C CH2 O P O P O 3'AMP CH3 O O pantoic acid pyrophosphate pantothenic acid CO2 NADH +H+ NAD+ CoASH 2) Tricarboxylic acid cycle, TCAC The cycle comprises the combination of a molecule of acetyl-CoA with oxaloacetate, resulting in the formation of a six-carbon tricarboxylic acid, citrate. There follows a series of reactions in the course of which two molecules of CO2 are released and oxaloacetate is regenerated. Also called citrate cycle or Krebs cycle. (1) Process of reactions CH3CO~SCoA acetyl CoA HSCoA H2O CH2 COO CH2 COO CO COO CH2 COO oxaloacetate NADH+H+ H2O HO C citrate synthase COO CH2 COO CH COO cis-aconitate citrate + aconitase NAD HO CH COO malate CH2 COO Citrate cycle COO isocitrate CH HO CH fumarate succinate COO isocitrate dehydrogenase succinyl CoA syntetase CH2 COO NADH+H+ NAD+ CO~ SCoA CH2 COO CH2 CH2 CoASH GTP GDP+Pi CO2 NADH+H+ succinate dehydrogenase CH2 COO COO NAD+ OOC CH FAD CH2 COO H2O CH2 COO fumarase HC FADH2 COO aconitase malate dehydrogenase H2O C CO2 HSCoA COCOO succinyl-CoA ¦Á-ketoglutarate ¦Á-ketodehydrogenase glutarate Summary of Krebs Cycle ① Reducing equivalents ② The net reaction of the TCAC: acetylCoA+3NAD++FAD+GDP+Pi+2H2O → 2CO2+3NADH+3H++FADH2+GTP+ HSCoA ③ Irreversible and aerobic reaction ④ The enzymes are located in the mitochondrial matrix. ⑤ Anaplerotic reaction of oxaloacetate ADP + Pi ATP CH3 Biotin C H2 C O + CO2 pyruvate carboxylase COOH CH3 COOH C O COOH NADPH+H+ C O + CO2 COOH + NADP COOH NAD+ NADH+H+ C H2 C H2 malic enzyme CHOH COOH COOH malic acid DH C O COOH (2) Bio-significance of TCAC ① Acts as the final common pathway for the oxidation of carbohydrates, lipids, and proteins. ② Serves as the crossroad for the interconversion among carbohydrates, lipids, and non-essential amino acids, and as a source of biosynthetic intermediates. Krebs Cycle is at the hinge of metabolism. 2. ATP produced in the aerobic oxidation • acetyl CoA → TCAC : 3 (NADH+H+) + FADH2 + 1GTP → 12 ATP. • pyruvate →acetyl CoA: NADH+H+ → 3 ATP • 1 G → 2 pyruvate : 2(NADH+H+) → 6 or 8ATP 1mol G: 36 or 38mol ATP (12+3 )×2 + 6( 8 )=36( 38 ) 3. The regulation of aerobic oxidation • The Key Enzymes of aerobic oxidation The Key Enzymes of glycolysis Pyruvate Dehydrogenase Complex Citrate synthase Isocitrate dehydrogenase (rate-limiting ) -Ketoglutarate dehydrogenase (1) Pyruvate dehydrogenase complex allosteric activators: AMP, CoA, NAD+,Ca2+ allosteric inhibitors: ATP, acetyl CoA, NADH, FA Pyruvate dehydrogenase (active form) Pi ATP pyruvate dehydrogenase phosphatase H2O 2+ Ca ,insulin pyruvate dehydrogenase kinase ADP pyruvate dehydrogenase P (inactive form) acetyl CoA, NADH ADP, NAD+ (2) Citrate synthase • Allosteric activator: ADP • Allosteric inhibitor: NADH, succinyl CoA, citrate, ATP (3) Isocitrate dehydrogenase • Allosteric activator: ADP, Ca2+ • Allosteric inhibitor: ATP (4) -Ketoglutarate dehydrogenase • Similar with Pyruvate dehydrogenase complex Oxidative phosphorylation→TCAC↑ • ATP/ADP↑ inhibit TCAC, Oxidative phosphorylation ↓ • ATP/ADP↓,promote TCAC, Oxidative phosphorylation ↑ 4. Pasteur Effect • Under aerobic conditions, glycolysis is inhibited and this inhibitory effect of oxygen on glycolysis is known as Pasteur effect. • The key point is NADH : NADH mitochondria Pyr TCAC CO2+H2O Pyr can’t produce to lactate. §4 Pentose Phosphate Pathway 1. The procedure of pentose phosphate pathway/shunt In cytosol 1) Oxidative Phase NADP+ NADPH+H+ H2O 6-phosphogluco6-Phosphogluconate G-6-P G-6-P nolactone 6-Phospho dehydrogenase NADP+ gluconolactonase 6-phosphogluconate dehydrogenase Ribose 5-P Isomerase Xylulose 5-P NADPH+H+ CO2 Ribulose 5-P Epimerase 2) Non-Oxidative Phase Ribose 5-p Fructose 6-p Glycolysis Fructose 6-p Xylulose 5-p Xylulose 5-p Glyceraldehyde 3-p • Transketolase: requires TPP • Transaldolase The net reation: 3G-6-P + 6NADP+ → ++ 2F-6-P + GAP + 6NADPH + H 3CO 2 2. Regulation of pentose phosphate pathway Glucose-6-phosphate Dehydrogenase is the rate-limiting enzyme. NADPH/NADP+↑, inhibit; NADPH/NADP+↓, activate. 3. Significance of pentose Phosphate pathway 1) To supply ribose 5-phosphate for biosynthesis of nucleic acid; 2) To supply NADPH as H-donor in metabolism; NADPH is very important “reducing power” for the synthesis of fatty acids and cholesterol, and amino acids, etc. NADPH is the coenzyme of glutathione reductase to keep the normal level of reduced glutathione; H2O2 2GSH NADP+ glutathione reductase 2H2O G-S-S-G + NADPH + H So, NADPH, glutathione and glutathione reductase together will preserved the integrity of RBC membrane. Deficiency of glucose 6-phosphate dehydrogenase results in hemolytic anemia. NADPH serves as the coenzyme of mixed function oxidases (monooxygenases). In liver this enzyme participates in biotransformation. §5 Glycogen synthesis and catabolism Glycogen is a polymer of glucose residues linked by (1→4) glycosidic bonds, mainly (1→6) glycosidic bonds, at branch points. 1. Glycogen synthesis (Glycogenesis) • The process of glycogenesis occurs in cytosol of liver and skeletal muscle mainly. ATP ADP G G-6-P HK or GK UDP Gn+1 G-1-P UDPG glycogen UDPG synthase pyrophosphorylase UTP PPi Gn • UDPG: G active pattern, G active donor. • In glycogen anabolism, 1 G consumes 2~P. • Glycogen synthase: key E. O CH2OH HN O H H OH H O H O OH H OH P O O O O P O CH2 O O H H OH H OH H UDPG N Branching enzyme 2. Glycogen catabolism (glycogenolysis) Pi Gn Gn-1 H2O G-1-P Phosphorylase Phosphorylase磷酸化酶: G-6-P Pi G-6-Pase G key E; The end products: 85% of G-1-P and 15% of free G; There is no activity of glucose 6phosphatase (G-6-Pase) in skeletal muscle. Debranching enzyme: glucan葡聚糖 transferase -1,6-glucosidase葡糖苷酶 (1→6) linkage Nonreducing ends Glycogen phosphorylase Transferase activity of debranching enzyme (1→6) glucosidase activity of debranching enzyme Glucos e 3. Regulation of glycogenesis糖原生成 and glycogenolysis糖原分解 1) Allosteric regulation In liver: G phosphorylase glycogenolysis In muscle: AMP Ca2+ phosphorylase-b ATP G-6-P phosphorylase-a glycogenolysis 2) Covalent modification Glucagon epinephrine cAMP receptor PKA G protein Adenylyl cyclase Phosphorylase Glycogen synthase glycogenolysis glycogenesis Blood sugar glucagon, epinephrine active adenylate cyclase inactive adenylate cyclase cAMP phosphorylase b kinase ATP ATP inactive PKA ATP active PKA glycogen synthase (active) glycogen synthase (inactive) Pi H2O ATP H2O phosphorylase b kinase ATP P inhibitor-1 (inactive) P ADP ADP Pi ADP P phosphorylase b phosphorylase a Pi protein phosphatase-1 inhibitor-1 (active) P H2O quiz 1,线粒体外NADH经α-磷酸甘油穿梭作用,进入线粒体内实 现氧化磷酸化,其p/o值为 A、0 D、3 2,下列化合物中除( A、CoQ NAD+ B、1 C、2 )外都是呼吸链的组成成分。 B、Cytb C、CoA D、 3,厌氧条件下,下列哪种化合物会在哺乳动物肌肉组织中 积累? A、丙酮酸 CO2 B、乙醇 C、乳酸 4,下列化合物中哪一种是琥珀酸脱氢酶的辅酶?( A、生物素 B、FAD C、NADP+ D、 ) D、NAD+ 5,下列不属于高能化合物的是: A,1,3-二磷酸甘油酸 C,磷酸烯醇式丙酮酸 E,琥珀酰辅酶A B,磷酸肌酸 D,6-磷酸葡萄糖 6,胞液中一分子乳酸彻底氧化后产生多少分子ATP? A,11或12 C,15或16, B,13或14 D,17或18 7,对二硝基苯酚的描述正确的是 A ,呼吸链阻断剂 的H+梯度 C, 抑制还原当量的转移 B,可破坏线粒体内外 D,可抑制ATP合成酶的活性 8,在TCA(三羧酸循环)中,下列哪一个阶段发生了底物水 平磷酸化? A,柠檬酸→α-酮戊二酸 C,琥珀酸→延胡索酸 B,α-酮戊二酸→琥珀酸 D,延胡索酸→苹果酸 §6 Gluconeogenesis 糖异生作用 • Concept: The process of transformation of noncarbohydrates to glucose or glycogen Materials: lactate乳酸, glycerol甘油, pyruvate丙酮酸 and glucogenic amino acid生糖氨基酸 • Site: mainly liver, kidney. Daily consumption of glucose: brain 120g Red blood cell 40g Resting muscle 40g Total 200g Daily available glucose: 150g (stored in liver as glycogen),only last for 12h。 在机体内糖的供应不足时,利用非糖物质合成糖 以维持血糖恒定就显得特别重要。 Gluconeogenesis Pathway 糖异生途径 • essentially a reversal of glycolysis(糖酵解) • but three energy barriers obstructing a simple reversal of glycolysis. Gluconeogenesis and glycolysis NAD+ ⑤磷酸丙糖异构酶 2 ⑥3-磷酸甘油醛脱氢酶 ΔG= -0.6kcal/mol 磷酸烯醇式丙酮酸 ⑥氧化磷酸化 1.3-二磷酸甘油酸 ΔG= -0.4kcal/mol ADP ⑦产能 1 ⑦磷酸甘油酸激酶 ATP 丙酮酸→ (可逆) NADH + H 2 克服第1步不可逆反应 磷酸二羟丙酮 ⑤异构 3-磷酸甘油醛 (可逆) 提问:如何进行? ΔG= +0.3kcal/mol (可逆) 3-磷酸甘油酸 ⑧异构 ⑨脱水 ΔG= +0.2kcal/mol ΔG=-0.8kcal/mol 2 ⑧磷酸甘油酸变位酶 (可逆) H20 2-磷酸甘油酸 2 ⑨烯醇化酶 (可逆) 磷酸 ADP 烯醇式丙酮酸 ATP 2 丙酮酸 ⑩丙酮酸激酶 ⑩产能 2 ΔG= -4.0kcal/mol (不可逆) 答案:采用 不同的酶,提 供更多的活 化能量迂回 绕过。 carboxylation of Pyruvate GDP CO 2 COO - CH O ~ P PEP carboxykinase GTP COO £¨ 1/3Mt. . 2/3cytosal£© - CH2 PEP ADP Pyr kinase ATP ADP+Pi ATP CO COO 2 C O Biotin C O CH2 Pyr carboxylase CH3 COOH £¨ Mt.£© pyruvate oxaloacetic acid pyruvate carboxylase N subject to carboxylation O C HN NH lysine residue CH CH H2C CH S (CH2)4 O O C biotin Biotin as coenzyme NH C (CH2)4 CH NH O O O -O C C C C 丙酮酸 O CH3 pyruvate O N H2C (CH2)4 C NH R 羧 化 生 物 素 O C C O CH2 HN NH O oxaloacetate biotin CH CH H2C C O O CH S C 草酰乙酸 carboxybiotin CH CH O O NH CH S (CH2)4 O C NH R 生 物 素 Pyruvate Carboxylase PEP Carboxykinase O O O O C ATP ADP + Pi C C C O CH3 O GTP GDP CH2 HCO3 C O O O C CO2 O pyruvate oxaloacetate 丙酮酸 草酰乙酸 C OPO32 CH2 PEP 磷酸烯醇式丙酮酸 葡萄糖 ATP ①己糖激酶 糖原(淀粉) ①活化 ΔG= -7.5kcal/mol 磷酸化酶 (不可逆) 磷酸 ADP 磷酸葡萄糖变位酶 6-磷酸葡萄糖 ②磷酸葡萄糖 异构酶 1-磷酸葡萄糖 ②异构 ΔG= -0.6kcal/mol (可逆) 6-磷酸果糖 ATP ③磷酸果糖激酶 ADP 1.6—二磷酸果糖 ④醛缩酶 3-磷酸甘油醛 ③二次活化 ΔG= -5.0kcal/mol (不可逆) ④裂解 ΔG= -0.3kcal/mol 磷酸二羟丙酮 (可逆) • 磷酸烯醇式 丙酮酸逆行 至1,6-二磷 酸果糖 • 第2步 提问:如何进行? OCH2 O CH P•答案:在 P酶作 2O 水解 HO 用下水解。 1,6-二磷 酸果糖 OH •第3步 水解酶催化 P OCH2 O CH2OH HO 6-磷酸果糖 磷酸烯醇式丙酮酸 OH Two Glycolysis irreversible reactions are bypassed by simple hydrolysis reactions: Fructose-1,6-bisphosphatase 6 CH OPO 2 2 3 1 CH2OPO32 O 5 H H 4 OH HO 2 3 OH H fructose-1,6-bisphosphate H2O CH2OPO32 O H CH2OH + Pi HO H OH OH H fructose-6-phosphate Glucose-6-phosphatase 6 CH OPO 2 2 3 5 O H 4 OH H OH 3 H H 2 CH2OH 1 OH OH glucose-6-phosphate O H H H2O H OH H + Pi H OH OH H glucose OH glyceraldehyde-3-phosphate NAD+ + Pi Glyceraldehyde-3-phosphate Dehydrogenase NADH + H+ Summary of Gluconeogenesis Pathway: 糖异生途径总结. 1,3-bisphosphoglycerate ADP Phosphoglycerate Kinase ATP 3-phosphoglycerate Phosphoglycerate Mutase 2-phosphoglycerate Enolase H2O phosphoenolpyruvate CO2 + GDP PEP Carboxykinase GTP oxaloacetate Pi + ADP HCO3 + ATP pyruvate Pyruvate Carboxylase Gluconeogenesis glucose Pi Gluconeogenesis Glucose-6-phosphatase H2O glucose-6-phosphate Phosphoglucose Isomerase fructose-6-phosphate Pi Fructose-1,6-bisphosphatase H2O fructose-1,6-bisphosphate Aldolase glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate Triosephosphate Isomerase (continued) glucose glycogen G-6-P G-1-P gluconeogenesis CYTOSOL MITOCHONDRIA F-6-P NAD+ glyceraldehyde 3-P glutamate glutamate ¦Á-ketoglutarate NADH+H+ DHAP malic acid malic acid F-1,6BP OAA Asp ¦Á-ketoglutarate NADH+H+ Asp 1.3-bisphospho2/3 glycerate CO2 ADP GDP ATP glycerate 3-P phosphoenol pyruvate ADP glycerate 2-P PK ATP NAD+ NADH+H+ lactate pyruvate OAA GTP GTP glycerol NAD+ ADP CO2 GDP 1/3 phosphoenol pyruvate ATP CO2 pyruvate Key enzymes of gluconeogenesis PEP carboxykinase Pyr carboxylase Fructose-bisphosphatase Glucose-6-phosphatase gluconeogenesis: F-6-P Pi F-2,6-BP PFK-1 FBPase-1 AMP H2O ATP F-1,6-BP glycolysis ADP F-2,6-BP glucagon PEP ADP F-1,6-BP glucagon Ala in liver insulin OAA ATP Pyr acetyl CoA What Materials can be Transformed to Glucose by Gluconeogenesis? 1),All those that can be transformed to pyruvate and any intermediate in TCAC, via oxaloacetate. – Glucogenic AA生糖氨基酸(mainly precursor when starving) – 反刍动物转化纤维素形成的有机酸 gluconeogenesis fermentation cellulose 有机酸 glucose 2),glycerol 3),lactate 肌肉剧烈运动后产生的大量 乳酸,经血液运输到肝脏,氧化成丙酮酸进入 糖异生途径变成葡萄糖,再进入血液运输到肌 肉中,构成Cori 循环, Lactic acid (Cori) cycle • Lactate, formed by the oxidation of glucose in skeletal muscle and by blood, is transported to the liver where it re-forms glucose, which again becomes available via the circulation for oxidation in the tissues. This process is known as the lactic acid cycle or Cori cycle. • prevent acidosis;reused lactate Lactic acid cycle glucose glucose gluconeogenesis glucose glycolytic pathway pyruvate pyruvate NADH+H+ NAD+ NAD+ NADH+H+ lactate liver lactate lactate blood muscle Gluconeogenesis is energy consuming 1.pyruvate + ATP + HCO3- 2.草酰乙酸 +GTP 3.3-P-甘油酸 + ATP oxaloacetate+ ADP +Pi + H+ PEP + CO2 + GDP 1,3-二磷酸甘油酸 + ADP + Pi Net ATP consumption: 4ATP 2 pyruvates 1 glucose glucose,use 6 ATP 2 pyruvate, net productioin 2 ATP So, what’s the significance of lactic acid cycle? 花费能量为代价换取肌肉中能量的产生 3. Significance of gluconeogenesis (1) Replenishment(补充) of Glucose by Gluconeogenesis and Maintaining Normal Blood Sugar Level. (2) Replenishment of Liver Glycogen. (3) Regulation of Acid-base Balance. (4) Beneficial for prey(被捕食者) and predator(捕食者) In survival competition §6 Blood Sugar and Its Regulation 1. The source and fate of blood sugar origin (income) fate (outcome) CO2 + H2O + energy dietary supply liver glycogen non-carbohydrate (gluconeogenesis) other saccharides blood sugar glycogen 3.89¡« 6.11mmol/L other saccharides non-carbohydrates (lipids and some amino acids) >8.89¡« 10.00mmol/L (threshold of kidney) urine glucose Blood sugar level must be maintained within a limited range to ensure the supply of glucose to brain. The blood glucose concentration is 3.89~6.11mmol/L normally. 2.Hormones Regulating blood sugar level 1)insulin: decreasing (unique) 2)glucagon:increasing 3)glucocorticoid(糖皮质激素):increasing 4)adrenaline(肾上腺素):increasing 3. Abnormal Blood Sugar Level • Hyperglycemia: > 7.22~7.78 mmol/L • The renalthreshold for glucose (肾糖阈): 8.89~10.00mmol/L • Hypoglycemia: < 3.33~3.89mmol/L Summary of carbohydrate metabolism 1st stage (cytosol) 2nd stage (Mt.) 3rd stage (Mt.) Exercise 1,从乳酸进行糖异生不需要()活性 A 醛缩酶 B 磷酸果糖激酶 C 3-磷酸甘油脱氢酶 D 乳酸脱氢酶 2,下列化合物对人糖异生中葡萄糖的净生成没有作用的是() A 丙酸盐 B甘油 C 乙酰辅酶A D 乳酸 E 丙氨酸 3,糖异生的第一步由()催化 A 己糖激酶 B 丙酮酸羧化酶 C PEP羧激酶 D 丙酮酸激酶 4,乳酸异生为糖的过程发生在() A 细胞质 B 线粒体 C 细胞核 D 核糖体 5,高AMP水平对糖酵解和糖异生的影响是什么?它是通过什么原理实现的?