Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Nucleotides metabolism 【目的与要求】 • • • • 记住嘌呤核苷酸有两条合成途径。结合嘌呤核苷酸 结构与从头合成途径,说出嘌呤核苷酸各元素或组 件的材料来源。熟记二磷酸核苷还原生成脱氧嘌呤 核苷酸。写出与嘌呤核苷酸补救合成有关的酶的名 称、功能、酶缺陷相关的疾病 结合嘌呤核苷酸合成途径、调节,熟记嘌呤核苷酸 抗代谢药物作用机理及临床意义 记住嘌呤核苷酸体内分解代谢终产物-尿酸及其与医 学的关系 熟记嘧啶核苷酸从头合成的原料及合成调节。说出 嘧啶核苷酸补救合成所需的酶及其催化的反应。明 白嘧啶核苷酸抗代谢药物作用机理,记住嘧啶核苷 酸分解代谢产物名称 Outline • 8.1 Purine metabolism -8.1.1 The Biosynthesis of Purines -8.1.2 Purine Salvage -8.1.3 De-oxyribonucleotide Synthesis -8.1.4 Purine Degradation • 8.2 Pyrimidine metabolism -8.2.1 Biosynthesis of Pyrimidines -8.2.2 Pyrimidine Degradation Nuclear acid digestion food (stomach) protein nuclear acid (RNA and DNA) (intestine) (phosphodiesterase) Endonucleases RNase DNase ribonucleotide mononucleotide Deoxyribonucleotide mmol umol (phosphoesterase) Nucleotidase Phosphate nucleoside nucleosidase Uric acid (purines) β-ureidopropionate ( primidines) base excrete Ribose or ribose-1-phosphate (戊糖代谢) Biological Roles of Nucleotides • Monomeric units of nucleic acids * • “ Energy currency”(ATP) * • Regulation of physiological processes – Adenosine controls coronary(冠脉) blood flow – cAMP and cGMP serve as signaling molecules • Precursor function - GTP to tetrahydrobiopternin • Coenzyme components - 5’-AMP in FAD/NAD+ • Activated intermediates: UDP-Glucose • Allosteric effectors- regulate themselves and others 思考? 8.1.1 Nucleotide Biosynthesis • For both purines and pyrimidines there are two means of synthesis - de novo (from bits and parts) - salvage (recycle from pre-existing nucleosides,and bases) • Ribose generates energy, but purine and pyrimidine rings do not • Nucleotide synthesis pathways are good targets for anti-cancer/antibacterial strategies Bases/Nucleosides/Nucleotides Base Adenine Base + Sugar= Base + Sugar + Phosphate= Nucleoside Nucleotide Deoxyadenosine Deoxyadenosine 5’-triphosphate (dATP) The Pyrimidine Ring The Purine Ring Purine Pyrimidine De novo purine biosynthesis • John Buchanan (1948) "traced" the sources of all nine atoms of purine ring 1. In de novo synthesis, Inosine-5'-P (Inosine Monophosphate, IMP) is the first nucleotide formed 2. It is ,then, converted to either AMP or GMP Location: liver cellular Cytoplasm De novo purinenucleotide synthesis proceeds by the synthesis of the purine base upon the ribose sugar moiety •N-1: aspartic acid •C-2:THF - one carbon units •N-3: glutamine •C-4, C-5, N-7: glycine 甘氨当中站, 谷氮坐两边, •C-6: CO2 •C-8: THF - one carbon units 左上天冬氨, 头顶CO2 •N-9: glutamine 还有俩一碳 C-6 N-1 C-5 N-7 C-8 C-2 C-4 N-3 N-9 H The metabolic origin of the nine atoms in the purine ring system 1. First, synthesis Inosine-5'-P (Inosine Monophosphate, IMP) O O P O HO OH H H H H ATP HO ' R-5 -P OH OH PRPP synthetase O HO O P O OH H H HO H H OH OH ' ' PP-1 -R-5 -P(PRPP) _ P P 5-磷酸核糖胺,PRA T1/2 30s 甘氨酰胺核苷酸(GAR) 甲酰甘氨酰胺核苷酸 (FGAR) 甲酰甘氨咪核苷酸(FGAM) 5-氨基咪唑核苷酸 (AIR) 5-氨基咪唑-4-羧酸核苷酸 5-氨基咪唑-4-(N-琥珀酸) -甲酰胺核苷酸(SAICAR) 5-氨基咪唑-4-(N-琥珀酸) -甲酰胺核苷酸(SAICAR) 5-氨基咪唑-4-甲酰胺 核苷酸(AICAR) 5-甲酰胺基咪唑4-甲酰胺核苷酸(FAICAR) PRPP Inosine monophosphate 1 carbon via folate NH3 via aspartylsuccinate ATP dependent step (2) ATP dependent step NH3 via glutamine ATP dependent step 1 carbon via folate ATP dependent step NH3 via glutamine ATP dependent step 2. Second, Making AMP and GMP kinase AMP ADP ATP GMP ATP ADP kinase GDP ADP kinase ATP ATP ADP kinase ATP GTP ADP Purines are synthesized on the Ribose ring 2.End product inhibition and “feed forward” regulation ATP provides the energy for GMP synthesis 1. Committed Steps ( at the first two steps ): PRPP , PRA (A bunch of steps you don’t need to know) Regulation of De Novo Synthesis 3. “cross regulation” occurs from IMP to AMP and GMP Feedback Inhibition GTP provides the energy for AMP synthesis Committed Step 8.1.2 Salvage Pathway for Purines Hypoxanthine + PRPP = IMP or GMP + PPi or Hypoxanthineguanosylphosphoribosyl transferase Guanine (HGPRTase) Adenine + PRPP = AMP + PPi Adeninephosphoribosyl transferase (APRTase) Salvage pathways are particularly important in brain/marrow that lack de novo purine synthesis Lesch-Nyhan Syndrome(莱-尼综合症) Absence of HGPRTase X-linked (Gene on X) Occurs primarily in males Characterized by: purine synthesis is increased 200-fold Increased uric acid Spasticity(痉挛) Neurological defects Aggressive behavior Self-mutilation(自残) Inter-conversion of Purine nucleotides GMP AMP NH3 AMPS (腺苷酸代琥珀酸) IMP XMP 8.1.3 Deoxyribonucleotide Biosynthesis BASE HOCH OH 2 O 5´ H H 1´ 4´ H 3´ HO HOCH2 O BASE OH 5´ H 1´ 4´ H H 3´ 2´ H Ribonucleotide HO OH H 2´ H Reductase Deoxyribonucleoside Ribonucleoside ribonucleotide reductase NDP dNDP ribonucleotide reductase ADP dADP ribonucleotide reductase GDP dGDP ribonucleotide reductase UDP dUDP ribonucleotide reductase CDP TDP dCDP dTDP Deoxyribonucleotide Biosynthesis ? 硫氧还蛋白 Mg2+ Ribonucleotides can be converted to deoxyribonucleotides by Ribonucleotide Reductase at the diphosphate level E. coli Ribonucleotide Reductase Regulates the level of cellular dNTPs The ribonucleotide reductase, An (R1)2(R2)2- type enzyme , has R1 (86 kD) and R2 (43.5 kD) two subunits dNDP+ATP kinase dNTP+ADP dADP+ATP kinase dGDP+ATP kinase dUDP+ATP kinase dUTP+ADP kinase dCTP+ADP dCDP+ATP phosphorylase dNDP dTTP ? dATP +ADP dGTP+ADP dNMP+Pi Regulation of dNTP Synthesis • The overall activity of ribonucleotide reductase must be regulated • Balance of the four deoxynucleotides must be controlled • ATP activates, dATP inhibits at the overall activity site • ATP, dATP, dTTP and dGTP bind at the specificity site to regulate the selection of substrates and the products made Tumor over-growth + Heterogeneity ( nucleotides + protein ) How to inhibit the biosynthesis of the tumor cells? for anti-cancer strategies(antibacterial) Chemotherapeutic Agents 1. Analogs of purine: OH SH N N N N N N H SH OH N N N N H 6-巯基鸟嘌呤 N (6-mercaptopurine, 6-MP) H N N N H2N inosine 6-巯基嘌呤 N N N H (6-mercaptoguanine) 8-氮杂鸟嘌呤 (8-azoguanine) 2. Analogs of amino acids: O NH2 H2N—C—CH2—CH2—CH—COOH Gln O Inhibit the reactions of the Gln NH2 N+ —N—CH2—C—O—CH2—CH—COOH 氮杂丝氨酸(azaserine) O NH2 N+ —N—CH2—C—CH2—CH2—CH—COOH 6-重氮-5-氧正亮氨酸(diazonnorleucine) 3. Analogs of Folic acid NH2 N N H2N N N H2N N H H N R O COOH H O COOH H —CH2—N— —C—N—CH CH2 R=H,aminopterin,氨喋呤 CH2 R=CH3,methotrexate, COOH 氨甲喋呤,MTX —CH2—N— N C N OH H 四氢叶酸,THF H —C—N—CH CH2 CH2 COOH PRPP 6MP MTX GAR FGAR PRA Gln azaserine 氮杂丝氨酸(azaserine) FGAM PPi 6MP MTX AICAR PRPP A AMP PPi FAICAR PRPP IMP 6MP The mechanism of the Chemotherapeutic Agents I G GMP azaserine PPi PRPP 6MP 8.1.4 Purine catabolism AMP I XO X GMP XO G Sequential removal of bits and pieces End product is uric acid XO: Xanthine Oxidase Excreted in Urine Xanthine Oxidase and Gout >0.48mmol/L(8mg%), The scale of uric acid (normal value) : 0.12~0.36mmol/L; male, 0.27mmol/L; formale, 0.21mmol/L Allopurinol, which inhibits XO, is a treatment of gout 别嘌呤醇 次黄嘌呤 The mechanism of allopurinol as a treatment of gout OH OH H N C N N allopurinol CH N N N N N H H PRPP ↓ I XO Allopurinol nucleotide X Purine nucleotides Uric acids 8.2 Pyrimidine Biosynthesis Pyrimidine Biosynthesis: In contrast to purines, First, synthesis of the pyrimidine ring; Next, attachment of ribose-phosphate to the ring De Novo Pyrimidine Biosynthesis HOOC H2C HC NH2 HOOC Carbamoyl-P Aspartate The metabolic origin of the six atoms of the pyrimidine ring 乳清酸核苷酸 乳清酸 二氢乳清酸 CTP From UTP at the triphosphate level kinase kinase UMP ATP UDP ADP ATP UTP ADP Synthesis of Thymine Nucleotides 1. Thymine nucleotides are made from dUMP, which derives from dUDP, dCDP 2. Biosynthesis of deoxyribonucleotides by ribonucleotide reductase 3. Biosynthesis of thymidine monophosphate (dTMP) by thymidylate synthase O C HN O C N Thymidylate synthase methylates dUMP at 5-position to make dTMP CH CH dTMP synthase HN N5,N10- methylene FH4 dR-5'-P FH4 dTMP ATP FH2 DHFR NADP+ dUMP O C O C NADPH+H N C-CH3 CH ' dR-5 -P + dTMP N5,N10-methylene THF is 1-C donor kinase kinase dTTP dTDP ADP ATP ADP Regulation of Pyrimidine Synthesis(de novo) • Aspartate transcarbamoylase (ATCase,细菌) catalyzes the condensation of carbamoyl phosphate with aspartate to form carbamoylaspartate • Note that carbamoyl phosphate represents an ‘activated’ carbamoyl group Feedback Inhibition Regulation of Pyrimidines Biosynthesis Regulation occurs at first step in the pathway (committed step) × 2ATP + CO2 + Glutamine = carbamoyl phosphate Inhibited by UTP If you have lots of UTP around this means you won’t make more that you don’t need CPS II • Carbamoyl phosphate for pyrimidine synthesis is made by carbamoyl phosphate synthetase II (CPS II,哺乳动物细胞) • This is a cytosolic enzyme (whereas CPS I is mitochondrial and used for the urea cycle) • Substrates are HCO3-, glutamine, 2 ATP Allosteric regulation of pyrimidine biosynthesis Enzyme regulated carbamoyl phosphate synthetase II Allosteric effector UDP, UTP PRPP, ATP Effect Feedback inhibition stimulatory CPS-I vs. CPS-II ? Biosynthesis: Purine vs. Pyrimidine start with ribose, build on nitrogen base Regulated by GTP/ATP Generates IMP Requires Energy build nitrogen base then added to PRPP Synthesized Regulated by UTP Generates UMP/CMP Requires Energy “Both are very complicated multi-step process which your kindly professor does not expect you to know in detail” Salvaging Pyrimidines • Pyrimidines+PRPP Nucleoside+PPi (嘧啶磷酸核糖转移酶) • A second type of salvage pathway involves two steps and is the major pathway for the pyrimidines, uracil and thymine Base + Ribose 1-phosphate = Nucleoside + Pi (nucleoside phosphorylase) • Nucleoside + ATP Nucleotide + ADP (nucleoside kinase-irreversible) Inhibitors of pymidines synthesis are cancer drugs Analogs of pymidines /pymidine nucleosides: N O F HN O N H 5-氟尿嘧啶, 5-Fu NH·HCl C C C O N O HOH2C H NH2 C N C C O H HO H OH H 阿糖胞苷 Cytarabine H C N O HOH2C H OH C H H 环胞苷 Cyclocytidine 氮杂丝氨酸 azaserine 阿糖胞苷Cytarabine UMP UTP CTP CDP dCDP MTX UDP dUDP dUMP dTMP 5FU (5FdUMP/5FUTP) Pyrimidine Catabolism-1 NH2 C N CH CH C N O H O NADPH+H+ NADP+ C NH3 HN CH HN CH C C N O O H C β-Alanine U CO2+NH3 H2N-CH2-CH2-COOH O C N H CH2 CH2 H2O O H2O HO C H2N CH2 CH2 C N O H O C HN O C N H NADPH+H+ C-CH3 CH O C NADP+ HN O C N H CH-CH3 CH2 DHT T H2O Pyrimidine Catabolism-2 CO2+NH3 H2N-CH2-CH-COOH CH3 β-氨基异丁酸 β-aminoisobutyrate O H2O HO C H2N CH-CH3 CH2 C N O H β-脲基异丁酸 ' 5 -P-R PRPP IMP CO2+Gln H2N-CO-P overview OMP AMP dAMP dGMP GMP UMP dUMP CMP dCMP dTMP ADP dADP dGDP GDP UDP dUDP CDP dCDP dTDP dUTP ATP dATP dGTP GTP UTP CTP De novo synthesis dCTP dTTP CPS-I vs. CPS-II 氨基甲酰磷酸合成酶I (CPS-I) 分布 线粒体(肝) 氮源 氨 氨基甲酰磷酸合成酶II (CPS-II) 胞液 谷氨酰胺 变构激活剂 N-乙酰谷氨酸 无 变构抑制剂 无 UMP 功能 尿素合成 嘧啶合成