Download Thermodynamics & ATP

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lecture 25
Chemical Sense in Metabolism
Making and Breaking C–C
Bonds
• Homolytic reactions
AB
A +B
• Heterolytic reactions
AB
A+ B
Making and Breaking C–C
Bonds
• Nucleophilic substitutions
R W+ Z
Leaving Nucleophile
group
RZ+ W
•
Nucleophilic Substitution
Reactions
SN1
H
a) R W
R +W
HW
b) R + Z
Carbocation
RZ
Carbocation
Stability
o
o
o
CH3 < 1 < 2 < 3
Reactivity
o
o
o
3 > 2 > 1 > CH3
R1
R2
C
R3
(Planar)
Racemization
Common Biological
Nucleophiles
SN2 Nucleophilic Substitution
Z
R1 R2
+ C W
R3
R1
–
Z
C
R2
W
–
R3
R2 R
1
Z
C
+ W
R3
Reactivity is SN2 Reactions
Nucleophile
–
–
–
I , HS ,RS
Br–,HO–,RO–,CN–
NH3;Cl–,RCOO–
H2O, ROH
RCOOH
Stronger
nucleophilic RO
base
Reactivity
Very good
Good
Fair
Weak
Very weak
O
> R C
O
5
>10
104
103; 101-102
1
-2
10
Weaker
nucleophilic
base
Leaving Group
• Must accommodate a pair of electrons
– And sometimes a negative charge
Major Role of Phosphorylation
• Converts a poor leaving group (–OH) into a
good one (Pi, PPi)
PPi > Pi > H2O >
OH
Acid Catalysis of Substitution
Reactions
Poor
ROH
R + OH
leaving group
ROH2
H
ROH
R
+ H2O Good
leaving group
This H is often donated by an
acidic sidechain of enzyme
Central Importance of
Carbonyls
1. Can produce a carbocation
O
O
C
C
2. Can stabilize a carbanion
O
O
C
C
C
C
Biological Carbonyls
NH3
R
C
O
Amino
acids
C
O
O
H3C
Fatty
acids
(CH2)n C
O
O
R
CH2 C
O
-keto acyl
(fat oxidation
and synthesis)
COO
-ketoglutarate
(Krebs cycle)
O
CH2 C
O
OOC
CH2
CH2
C
Aldol Condensation
R1
H
C
R2
R1
O
C
C
R3
H
R2
O
C
R3
Aldol Condensation
R4
O
R1
C
R5
C
O
C
R3
R2
R4 R1
O
C
C
R5 R2
O
C
R3
Aldol Condensation
H
R4 R1
O
C
C
R5 R2
R4 R1
O
C
HO
R3
C
C
R5 R2
O
C
R3
Aldolase Reaction
• Glycolysis and gluconeogenesis
Glyceraldehyde- Dihydroxyacetone3-phosphate
phosphate
R4
O
R1
+ H
C
R5
C
R2
Aldolase
R4 R1
HO
C
C
R5 R2
O
C
R3
Fructose-1,6bisphosphate
O
C
R3
Claisen Condensation
carbanion + ester carbonyl
O
R1
C
R2
R5
C
R4
+
C
O
R3
O
R1
ketone
O
R5 R2
C
C
C
R4 O
R3
O
Claisen Condensation
R1
O
R5 R2
C
C
C
O
R1
R4 O
O
R5 R2
C
C
C
R4
+
R3
H
HO
R3
O
R3
O
Thioesters in Biology
O
R1
C
Oxygen ester
O
R2
O
R1
C
Thioester
S
R2
• In thioesters, the carbonyl carbon has more
positive character than carbonyl carbon in
oxygen ester.
“High-Energy” Thioester
Compounds
Coenzyme A
SH
H
C
H -mercapto-
H
C
H
HN
C
O
ethylamine
H
H
C
C
H
H
N
H
H
CH3 H
C
C
C
O
OH CH3 H
C
O
O
P
O
ADP
O
O
P
O
O
CH2 Adenine
O
Pantothenic acid
(growth factor)
O
O
P
O
OH
O
Fatty Acid Metabolism
• Uses Claisen condensation
SCoA
O
O
C
CH2
R
C
H 2C
SCoA
Thiolase
O
R
CH2
C
O
CH 2
C
SCoA
+
CoASH
• Thiolase acts in fatty acid oxidation for
energy production
Thiolase: Role of Cys-SH
O
Enz
SH
+ R C
S
CoA
O
Enz
S
C
R
+ CoASH
O
R1
C
Enz
CH2
SH +
R
O
O
C
CH2 C
R1
Thiolase: Role of Cys-SH
H
Enz
SH
+I
C
H
O
C
HI
H
Enz
O
S
C
H
O
C
O
Energy Diagram for Reaction
• ‡ is the transition state
– Pentacovalent carbon, for example
Functional Groups on
Enzymes
• Amino acid side chains
–
SH
–
O
C
– Imidazole
–
CH2OH
O
Functional Groups on
Enzymes
• Coenzymes/cofactors
– Pyridoxal phosphate
• Metal ions and complexes
– Mg2+, Mn2+, Co2+, Fe2+, Zn2+, Cu2+, Mo3+
Enzyme Inhibitors and
Poisons
•
SH + Hg2+
(heavy metals)
• Chelating agents
– EDTA (divalent cations)
– CN– (Fe2+)
• Cofactor analogs
– Warfarin
• Suicide substrates
S
Hg
Lecture 26
ATP and Phosphoryl Group
Transfers
Phosphate Esters and
Anhydrides
O
OH
O
P
O
O
O
P
O
R2O
OR
OR
Diester
O
ribose
Anhydride
O
OR1
O
Monoester
Adenine
P
P
O
O
O
P
O
Mg2+
O
O
P
O
O
Phosphoryl Group Transfers
PO43- has
nucleophilic O – O
O P+ is electrophile
HO
P
OH
O
OH
P
O
O
pK3=12.7
O
HO
P
OH
O
OH
pK1=~1
HO
P
O
OH
pK2=6.7
O
O
P
O
OH
Phosphoryl (Not Phosphate)
Transfers
Glucose-1-phosphate
CH2OH
O
OH
OH
O
OH
18
O
P
O
CH2OH
O
OH
OH
OH
+ OH
O
O
O -labeled O
H
H
(M. Cohn)
HO
P
O
O
Nucleophilic Displacements
OR1
R2O
R2O
R3O
P
OR3
OR1
O
P
OR4
O
(nucleophile)
H
O
R4
OR1
R3O P
R4O
+
R2OH
O
ATP as a Phophoryl Donor
• 2 roles for ATP
– Thermodynamic
• Drive unfavorable reactions
– Mechanistic
• Offer 3 electrophilic
phosphorous atoms for
nucleophilic attack
ATP as Phosphoryl Donor
• 3 points of nucleophilic attack
O


O
O
P
O
O
P
O

O
O
P
O
Ribose
Adenine
O
PhosphorPyrophos- Adenylation (AMP)
ylation
phorylation
Adenylyation: Attack on -P
Alanine
NH3
H3C
C
O
O
C
O
O
H
P
O
O
O
P
O
O
O
P
O
Ribose
Adenine
O
O
NH3
H3C
C
C
H
O
O
O
P
O
O
O
Ribose
Adenine
+
P
O
O
O
P
O
O
Adenylation: Attack on -P
O
NH3
H3C
C
C
H
O
O
O
P
O
O
Ribose
Adenine
+
P
O
O
O
P
O
O
O
Aminoacyl adenylate
–Fatty acid activation
for oxidation
-Amino acid activation
for protein synthesis
Pyrophosphate
PPi
2Pi
Pyrophosphorylation: Attack on -P
O
O
P
CH2
O
O
O
O
OH
O
P
O
O
P
O
O
P
O
O
O
OH OH
Ribose-5-phosphate
O
O
P
AMP
CH2
O
O
O
O
P
OH OH
O
O
O
P
O
O
5'-phosphoribose-1-pyrophosphate
(PRPP)
Ribose
Adenine
Phosphorylation: Attack on -P
O
H2C
O
O
OH
O
P
O
P
O
P
O
O
OH
HO
O
O
OH
OH
Glucose
ADP
O
H2C
O
P
O
O
O
OH
HO
OH
OH
Glucose-6-phosphate
O
Ribose
Adenine
Amino Acid Sidechains as
Nucleophiles
O
O
P
O
CH2
O
O
O
N
NH
N
P
O
O
P-lys
(-amino)
O
P
P
O
P-ser, thr
O
O
O
P-his
(1-N)
O
NH C
NH2
P-arginine
NH
O
P
O
NH C
NH CH2 COO
NH2
P-creatine
Enzymatic Phosphoryl Transfers
• Four classes
– Phosphatases
• Water is acceptor/nucleophile
– Phosphodiesterases
• Water is acceptor/nucleophile
– Kinases
• Nucleophile is not water
– Phosphorylases
• Phosphate is nucleophile
Phosphatases: Glucose-6Phosphatase
CH2OH
O
Enz
X
O
P
O
O
HO
O
CH2
OH
OH
O
Enz
O
OH
HO
OH
OH
OH
X
P
O
O
Covalent E-S intermediate is formed
X=His
Phosphatases: Glucose-6Phosphate
O
Enz
X
P
O
O
H
H
O
Enz
X
O
HO
P
O
O
Phosphodiesterases: RNAase
O
Pyr
O
H
O
H
H
O
H
OH
P
O
O
H
H
O
H
P
O
Base
O
O
H
O
O
H
Pyr
H
H
O
H
OH
P
O
O
O
O
2',3'-cyclic phosphate
No covalent intermediate
with enzyme
Phosphodiesterases: RNAase
O
Pyr
O
H
H
O
P
O
H
H
O
Pyr
O
H
O
O
O
H
H
O
H
H
O
H
OH
P
O
OH
Kinases: -Phosphoryl
Transfer
• Transfer from ATP
O
O
RX
P
O
O
O
P
O
O
O
P
O
Ribose
Adenine
O
Mg2+
O
O
RX
P
O
O
+ O
P
O
O
O
P
O
Mg2+
O
Ribose
Adenine
Kinases: P-Enzyme
Intermediates
O
Enz
X
O
P
O
O
O
P
O
O
P
O
O
ADP
O
Enz
X
P
O
O
O
Ribose
Adenine
Kinases: P-Enzyme Intermediates
O
Enz
X
P
O
Nulceophilic
substrate
Y
O
O
Enz
X
O
P
O
Y
Product
Kinases
RX
R-OH
Example
Hexokinase
PFK
R-OP
Nucleoside
disphosphokinase
R-NH2
Creatine kinase
R-COO–
Succinate
thiokinase
O
Pyruvate kinase
R C COO
Protein-ser-OH Protein kinase
Protein-thr-OH
Enz-X-P?
?
No
Yes
No
Yes
No
Yes
Pyruvate Kinase
• Makes ATP (∆Gº= –31 kJ/mol) from PEP
O
O
H2C
O
C
P
O
O
P
O
COO
O
P
O
O
O
O
O
H3C
O
C
O
Pyruvate COO
P O
O
ADP
+
H2C
C
COO
PEP
∆Gº= –62 kJ/mol
Ribose
Adenine
Phosphoryl-Group Transfer
Potential
Compound
² Gº
PEP
-62 kJ/mole
1,3-bisphospho-49
glycerate
P-creatine
-43
Acetyl-P
-42
ATP (and other
-31
NTP)
Glucose-1-P
-21
Glucose-6-P
-14
Glycerol-1-P
-9
Structure
Enol-P
Acyl-P
Guanidinium-P
Acyl-P
P-anhydride
Hemiacteal-P
Alcohol-P
Alcohol
Significance of “High-Energy” P
Compounds
• Drive synthesis of compounds below
• Phosphated compounds are more
reactive
– Thermodynamically
– Kinetically
• If organism has ATP (etc…), it can do
work and resist entropy
Cells must get ATP
Related documents