Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lecture 25 Chemical Sense in Metabolism Making and Breaking C–C Bonds • Homolytic reactions AB A +B • Heterolytic reactions AB A+ B Making and Breaking C–C Bonds • Nucleophilic substitutions R W+ Z Leaving Nucleophile group RZ+ W • Nucleophilic Substitution Reactions SN1 H a) R W R +W HW b) R + Z Carbocation RZ Carbocation Stability o o o CH3 < 1 < 2 < 3 Reactivity o o o 3 > 2 > 1 > CH3 R1 R2 C R3 (Planar) Racemization Common Biological Nucleophiles SN2 Nucleophilic Substitution Z R1 R2 + C W R3 R1 – Z C R2 W – R3 R2 R 1 Z C + W R3 Reactivity is SN2 Reactions Nucleophile – – – I , HS ,RS Br–,HO–,RO–,CN– NH3;Cl–,RCOO– H2O, ROH RCOOH Stronger nucleophilic RO base Reactivity Very good Good Fair Weak Very weak O > R C O 5 >10 104 103; 101-102 1 -2 10 Weaker nucleophilic base Leaving Group • Must accommodate a pair of electrons – And sometimes a negative charge Major Role of Phosphorylation • Converts a poor leaving group (–OH) into a good one (Pi, PPi) PPi > Pi > H2O > OH Acid Catalysis of Substitution Reactions Poor ROH R + OH leaving group ROH2 H ROH R + H2O Good leaving group This H is often donated by an acidic sidechain of enzyme Central Importance of Carbonyls 1. Can produce a carbocation O O C C 2. Can stabilize a carbanion O O C C C C Biological Carbonyls NH3 R C O Amino acids C O O H3C Fatty acids (CH2)n C O O R CH2 C O -keto acyl (fat oxidation and synthesis) COO -ketoglutarate (Krebs cycle) O CH2 C O OOC CH2 CH2 C Aldol Condensation R1 H C R2 R1 O C C R3 H R2 O C R3 Aldol Condensation R4 O R1 C R5 C O C R3 R2 R4 R1 O C C R5 R2 O C R3 Aldol Condensation H R4 R1 O C C R5 R2 R4 R1 O C HO R3 C C R5 R2 O C R3 Aldolase Reaction • Glycolysis and gluconeogenesis Glyceraldehyde- Dihydroxyacetone3-phosphate phosphate R4 O R1 + H C R5 C R2 Aldolase R4 R1 HO C C R5 R2 O C R3 Fructose-1,6bisphosphate O C R3 Claisen Condensation carbanion + ester carbonyl O R1 C R2 R5 C R4 + C O R3 O R1 ketone O R5 R2 C C C R4 O R3 O Claisen Condensation R1 O R5 R2 C C C O R1 R4 O O R5 R2 C C C R4 + R3 H HO R3 O R3 O Thioesters in Biology O R1 C Oxygen ester O R2 O R1 C Thioester S R2 • In thioesters, the carbonyl carbon has more positive character than carbonyl carbon in oxygen ester. “High-Energy” Thioester Compounds Coenzyme A SH H C H -mercapto- H C H HN C O ethylamine H H C C H H N H H CH3 H C C C O OH CH3 H C O O P O ADP O O P O O CH2 Adenine O Pantothenic acid (growth factor) O O P O OH O Fatty Acid Metabolism • Uses Claisen condensation SCoA O O C CH2 R C H 2C SCoA Thiolase O R CH2 C O CH 2 C SCoA + CoASH • Thiolase acts in fatty acid oxidation for energy production Thiolase: Role of Cys-SH O Enz SH + R C S CoA O Enz S C R + CoASH O R1 C Enz CH2 SH + R O O C CH2 C R1 Thiolase: Role of Cys-SH H Enz SH +I C H O C HI H Enz O S C H O C O Energy Diagram for Reaction • ‡ is the transition state – Pentacovalent carbon, for example Functional Groups on Enzymes • Amino acid side chains – SH – O C – Imidazole – CH2OH O Functional Groups on Enzymes • Coenzymes/cofactors – Pyridoxal phosphate • Metal ions and complexes – Mg2+, Mn2+, Co2+, Fe2+, Zn2+, Cu2+, Mo3+ Enzyme Inhibitors and Poisons • SH + Hg2+ (heavy metals) • Chelating agents – EDTA (divalent cations) – CN– (Fe2+) • Cofactor analogs – Warfarin • Suicide substrates S Hg Lecture 26 ATP and Phosphoryl Group Transfers Phosphate Esters and Anhydrides O OH O P O O O P O R2O OR OR Diester O ribose Anhydride O OR1 O Monoester Adenine P P O O O P O Mg2+ O O P O O Phosphoryl Group Transfers PO43- has nucleophilic O – O O P+ is electrophile HO P OH O OH P O O pK3=12.7 O HO P OH O OH pK1=~1 HO P O OH pK2=6.7 O O P O OH Phosphoryl (Not Phosphate) Transfers Glucose-1-phosphate CH2OH O OH OH O OH 18 O P O CH2OH O OH OH OH + OH O O O -labeled O H H (M. Cohn) HO P O O Nucleophilic Displacements OR1 R2O R2O R3O P OR3 OR1 O P OR4 O (nucleophile) H O R4 OR1 R3O P R4O + R2OH O ATP as a Phophoryl Donor • 2 roles for ATP – Thermodynamic • Drive unfavorable reactions – Mechanistic • Offer 3 electrophilic phosphorous atoms for nucleophilic attack ATP as Phosphoryl Donor • 3 points of nucleophilic attack O O O P O O P O O O P O Ribose Adenine O PhosphorPyrophos- Adenylation (AMP) ylation phorylation Adenylyation: Attack on -P Alanine NH3 H3C C O O C O O H P O O O P O O O P O Ribose Adenine O O NH3 H3C C C H O O O P O O O Ribose Adenine + P O O O P O O Adenylation: Attack on -P O NH3 H3C C C H O O O P O O Ribose Adenine + P O O O P O O O Aminoacyl adenylate –Fatty acid activation for oxidation -Amino acid activation for protein synthesis Pyrophosphate PPi 2Pi Pyrophosphorylation: Attack on -P O O P CH2 O O O O OH O P O O P O O P O O O OH OH Ribose-5-phosphate O O P AMP CH2 O O O O P OH OH O O O P O O 5'-phosphoribose-1-pyrophosphate (PRPP) Ribose Adenine Phosphorylation: Attack on -P O H2C O O OH O P O P O P O O OH HO O O OH OH Glucose ADP O H2C O P O O O OH HO OH OH Glucose-6-phosphate O Ribose Adenine Amino Acid Sidechains as Nucleophiles O O P O CH2 O O O N NH N P O O P-lys (-amino) O P P O P-ser, thr O O O P-his (1-N) O NH C NH2 P-arginine NH O P O NH C NH CH2 COO NH2 P-creatine Enzymatic Phosphoryl Transfers • Four classes – Phosphatases • Water is acceptor/nucleophile – Phosphodiesterases • Water is acceptor/nucleophile – Kinases • Nucleophile is not water – Phosphorylases • Phosphate is nucleophile Phosphatases: Glucose-6Phosphatase CH2OH O Enz X O P O O HO O CH2 OH OH O Enz O OH HO OH OH OH X P O O Covalent E-S intermediate is formed X=His Phosphatases: Glucose-6Phosphate O Enz X P O O H H O Enz X O HO P O O Phosphodiesterases: RNAase O Pyr O H O H H O H OH P O O H H O H P O Base O O H O O H Pyr H H O H OH P O O O O 2',3'-cyclic phosphate No covalent intermediate with enzyme Phosphodiesterases: RNAase O Pyr O H H O P O H H O Pyr O H O O O H H O H H O H OH P O OH Kinases: -Phosphoryl Transfer • Transfer from ATP O O RX P O O O P O O O P O Ribose Adenine O Mg2+ O O RX P O O + O P O O O P O Mg2+ O Ribose Adenine Kinases: P-Enzyme Intermediates O Enz X O P O O O P O O P O O ADP O Enz X P O O O Ribose Adenine Kinases: P-Enzyme Intermediates O Enz X P O Nulceophilic substrate Y O O Enz X O P O Y Product Kinases RX R-OH Example Hexokinase PFK R-OP Nucleoside disphosphokinase R-NH2 Creatine kinase R-COO– Succinate thiokinase O Pyruvate kinase R C COO Protein-ser-OH Protein kinase Protein-thr-OH Enz-X-P? ? No Yes No Yes No Yes Pyruvate Kinase • Makes ATP (∆Gº= –31 kJ/mol) from PEP O O H2C O C P O O P O COO O P O O O O O H3C O C O Pyruvate COO P O O ADP + H2C C COO PEP ∆Gº= –62 kJ/mol Ribose Adenine Phosphoryl-Group Transfer Potential Compound ² Gº PEP -62 kJ/mole 1,3-bisphospho-49 glycerate P-creatine -43 Acetyl-P -42 ATP (and other -31 NTP) Glucose-1-P -21 Glucose-6-P -14 Glycerol-1-P -9 Structure Enol-P Acyl-P Guanidinium-P Acyl-P P-anhydride Hemiacteal-P Alcohol-P Alcohol Significance of “High-Energy” P Compounds • Drive synthesis of compounds below • Phosphated compounds are more reactive – Thermodynamically – Kinetically • If organism has ATP (etc…), it can do work and resist entropy Cells must get ATP