Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
• • • Predicting the flavodoxin secondary and tertairy structure Flavodoxins are electron-transfer proteins involved in a variety of photosynthetic and non-photosynthetic reactions The redox activity of flavodoxin derives from its bound flavin mononucleotide cofactor (FMN), whose intrinsic properties are profoundly modified by the host protein. In the last decade of flavodoxin research, the following has been revealed: o the folding pathway o the structure and stability of the apoprotein, o the mechanism of FMN recognition, o the interactions that stabilize the functional complex and tailor the redox potentials o many details of the binding and electron transfer to partner proteins Predicting the flavodoxin secondary and tertairy structure • • The next decade should witness an even deeper understanding of the flavodoxin molecule and a greater comprehension of its many physiological roles. The fact that flavodoxin is essential for the survival of some human pathogens could make it a drug target on its own. Predicting the flavodoxin secondary and tertairy structure • Predict using a multiple alignment of 13 flavodoxin sequences • Redox protein • Involved in photosynthesis and other crucial processes • The 14th sequence on the bottom of the alignment is a VERY distantly related protein cheY • Chemotaxis protein • For example, it interacts with proteins at the base of the flagellar apparatus of E. coli and promotes clockwise flagellar rotation Flavodoxin-cheY multiple sequence alignment: 1fx1 FLAV_DESDE FLAV_DESVH FLAV_DESSA FLAV_DESGI 2fcr FLAV_AZOVI FLAV_ENTAG FLAV_ANASP FLAV_ECOLI 4fxn FLAV_MEGEL FLAV_CLOAB 3chy -PKALIVYGSTTGNT-EYTAETIARQLANAG-YEVDSRDAASVEAGGLFEGFDLVLLGCSTWGDDSI------ELQDDFIPLF-DSLEETGAQGRKVACF MSKVLIVFGSSTGNT-ESIaQKLEELIAAGG-HEVTLLNAADASAENLADGYDAVLFgCSAWGMEDL------EMQDDFLSLF-EEFNRFGLAGRKVAAf MPKALIVYGSTTGNT-EYTaETIARELADAG-YEVDSRDAASVEAGGLFEGFDLVLLgCSTWGDDSI------ELQDDFIPLF-DSLEETGAQGRKVACf MSKSLIVYGSTTGNT-ETAaEYVAEAFENKE-IDVELKNVTDVSVADLGNGYDIVLFgCSTWGEEEI------ELQDDFIPLY-DSLENADLKGKKVSVf MPKALIVYGSTTGNT-EGVaEAIAKTLNSEG-METTVVNVADVTAPGLAEGYDVVLLgCSTWGDDEI------ELQEDFVPLY-EDLDRAGLKDKKVGVf --KIGIFFSTSTGNT-TEVADFIGKTLGA---KADAPIDVDDVTDPQALKDYDLLFLGAPTWNTG----ADTERSGTSWDEFLYDKLPEVDMKDLPVAIF -AKIGLFFGSNTGKT-RKVaKSIKKRFDDET-MSDA-LNVNRVS-AEDFAQYQFLILgTPTLGEGELPGLSSDCENESWEEFL-PKIEGLDFSGKTVALf MATIGIFFGSDTGQT-RKVaKLIHQKLDG---IADAPLDVRRAT-REQFLSYPVLLLgTPTLGDGELPGVEAGSQYDSWQEFT-NTLSEADLTGKTVALf SKKIGLFYGTQTGKT-ESVaEIIRDEFGN---DVVTLHDVSQAE-VTDLNDYQYLIIgCPTWNIGEL--------QSDWEGLY-SELDDVDFNGKLVAYf -AITGIFFGSDTGNT-ENIaKMIQKQLGK---DVADVHDIAKSS-KEDLEAYDILLLgIPTWYYGE--------AQCDWDDFF-PTLEEIDFNGKLVALf -MK--IVYWSGTGNT-EKMAELIAKGIIESG-KDVNTINVSDVNIDELL-NEDILILGCSAMGDEVL-------EESEFEPFI-EEIS-TKISGKKVALF MVE--IVYWSGTGNT-EAMaNEIEAAVKAAG-ADVESVRFEDTNVDDVA-SKDVILLgCPAMGSEEL-------EDSVVEPFF-TDLA-PKLKGKKVGLf -MKISILYSSKTGKT-ERVaKLIEEGVKRSGNIEVKTMNLDAVD-KKFLQESEGIIFgTPTYYAN---------ISWEMKKWI-DESSEFNLEGKLGAAf ADKELKFLVVDDFSTMRRIVRNLLKELGFN--NVEEAEDGVDALNKLQAGGYGFVI---SDWNMPNM----------DGLELL-KTIRADGAMSALPVLM 1fx1 FLAV_DESDE FLAV_DESVH FLAV_DESSA FLAV_DESGI 2fcr FLAV_AZOVI FLAV_ENTAG FLAV_ANASP FLAV_ECOLI 4fxn FLAV_MEGEL FLAV_CLOAB 3chy GCGDS-SY-EYFCGA-VDAIEEKLKNLGAEIVQD---------------------GLRIDGD--PRAARDDIVGWAHDVRGAI-------ASGDQ-EY-EHFCGA-VPAIEERAKELgATIIAE---------------------GLKMEGD--ASNDPEAVASfAEDVLKQL-------GCGDS-SY-EYFCGA-VDAIEEKLKNLgAEIVQD---------------------GLRIDGD--PRAARDDIVGwAHDVRGAI-------GCGDS-DY-TYFCGA-VDAIEEKLEKMgAVVIGD---------------------SLKIDGD--PE--RDEIVSwGSGIADKI-------GCGDS-SY-TYFCGA-VDVIEKKAEELgATLVAS---------------------SLKIDGE--PD--SAEVLDwAREVLARV-------GLGDAEGYPDNFCDA-IEEIHDCFAKQGAKPVGFSNPDDYDYEESKS-VRDGKFLGLPLDMVNDQIPMEKRVAGWVEAVVSETGV-----GLGDQVGYPENYLDA-LGELYSFFKDRgAKIVGSWSTDGYEFESSEA-VVDGKFVGLALDLDNQSGKTDERVAAwLAQIAPEFGLS--L-GLGDQLNYSKNFVSA-MRILYDLVIARgACVVGNWPREGYKFSFSAALLENNEFVGLPLDQENQYDLTEERIDSwLEKLKPAV-L-----GTGDQIGYADNFQDA-IGILEEKISQRgGKTVGYWSTDGYDFNDSKA-LRNGKFVGLALDEDNQSDLTDDRIKSwVAQLKSEFGL-----GCGDQEDYAEYFCDA-LGTIRDIIEPRgATIVGHWPTAGYHFEASKGLADDDHFVGLAIDEDRQPELTAERVEKwVKQISEELHLDEILNA G-----SY-GWGDGKWMRDFEERMNGYGCVVVET---------------------PLIVQNE--PDEAEQDCIEFGKKIANI--------G-----SY-GWGSGEWMDAWKQRTEDTgATVIGT----------------------AIVNEM--PDNA-PECKElGEAAAKA--------STANSIAGGSDIA---LLTILNHLMVKgMLVYSG----GVAFGKPKTHLGYVHINEIQENEDENARIfGERiANkVKQIF----------VTAEAKK--ENIIAA---------AQAGAS-------------------------GYVV-----KPFTAATLEEKLNKIFEKLGM------ Iteration 0 T G SP= 136944.00 AvSP= 10.675 SId= 4009 AvSId= 0.313 Rules of thumb when looking at a multiple alignment (MA) • • • • Hydrophobic residues are internal Gly (Thr, Ser) in loops MA: hydrophobic block -> internal -strand MA: alternating (1-1) hydrophobic/hydrophilic => edge -strand • MA: alternating 2-2 (or 3-1) periodicity => -helix • MA: gaps in loops • MA: Conserved column => functional? => active site Rules of thumb when looking at a multiple alignment (MA) … cont. • Active site residues are together in 3D structure • Helices often cover up core of strands • Helices less extended than strands => more residues to cross protein • -- motif is right-handed in >95% of cases (with parallel strands) • MA: ‘inconsistent’ alignment columns and match errors! • Secondary structures have local anomalies, e.g. -bulges Amino acid properties Amino acid hydrophobicity scale hydrophobic hydrophilic Burried and Edge strands Parallel -sheet Anti-parallel -sheet Periodicity patterns within secondary structures Burried -strand Edge -strand -helix = hydrophilic = hydrophobic TOPS diagrams Circle = helix Triangle = strand -- motif is right-handed in >95% of cases RH LH Building flavodoxin RH