Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
MS/MS Spectral Interpretation Linda Breci Chemistry Mass Spectrometry Facility University of Arizona MS Summer Workshop MS/MS Spectral Interpretation small molecule structure Arpad Somogyi Chemistry Mass Spectrometry Facility University of Arizona MS Summer Workshop Session Overview • Ways to approach predicting fragment ion formation • Fragmentation examples – Peptides • Fragmentation mechanism • Sequence a peptide – Flavonoids – Fatty Acids – Oligonucleotides MS/MS Fragmentation Few libraries, little software available for data analysis • Why? We need useful information from MS/MS spectra Few libraries, little software available for data analysis • Why? For MS/MS you have at least one of each of these: • Ionize – – – – – – EI CI ESI NSI MALDI FAB • Activate – – – – – – CID SID SORI IRMPD ECD BIRD • Analyze – – – – – – – Q Q-trap linear-trap B sectors E sectors FTICR TOF You put them together like this: * ESI-CID-Q-trap * ESI-SORI-FTICR * FAB-EBSectorSID-TOF * NSI-CID-Q-trap * MALDI-TOF-CID-TOF * NSI-Linear-trap-CID-FTICR * NSI-Q-trap-SID-TOF * EI-CID-Q-trap * ESI-IRMPD-FTICR * ESI-Q-CID-Q * MALDI-TOF-CID-TOF * NSI-BIRD-FTICR * ESIEBSector-CID-EBSector * and on…and on… You put them together like this: * ESI-CID-Q-trap * ESI-SORI-FTICR * FAB-EBSectorSID-TOF * NSI-CID-Q-trap * MALDI-TOF-CID-TOF * NSI-Linear-trap-CID-FTICR * NSI-Q-trap-SID-TOF * EI-CID-Q-trap * ESI-IRMPD-FTICR * ESI-Q-CID-Q * MALDI-TOF-CID-TOF * NSI-BIRD-FTICR * ESIEBSector-CID-EBSector * and on…and on… And you buy them from different manufacturers – Different source designs • Example: ESI capillary temperature – Different analyzer designs • Example: Gas pressure, length of ion path (D timeframe) How ions will fragment must be considered from fundamentals (rather than rules) • Ways to approach predicting MS/MS fragment formation • Literature – Study methods and ID’d spectra for your ion class • Likely sites of protonation (or deprotonation) – Find proton affinities or acid strengths • Mobility of protons – Consider the likelihood of multiple cleavage sites – Consider multiple gas-phase configurations • Likely leaving groups Types of ions formed • EI (hard ionization) – M+· Radical ion – A lot of fragmentation occurs upon ionization • CI, FAB, ESI, APCI, MALDI (soft ionization) – [M+H]+ Protonated ion – [M-H]- Deprotonated ion – [M+Na]+ and other metal cations Today’s Topic EI is not an MS/MS method • Discussed Day 4 • Libraries of EI spectra are useful • NIST/EPA/NIH Mass Spectral Library with Search http://webbook.nist.gov/chemistry/ • Libraries are not always helpful, tutorials available – http://www.chem.arizona.edu/massspec/ 2 Categories of fragments from protonated or deprotonated molecules (CI, FAB, ESI, APCI, MALDI) • Charge Remote – Fragmentation reactions uninfluenced by charge – High energy process – Charge remote references provided • Charge Directed – Bond cleavage occurs with involvement of charge – Low energy – Most informative for many molecules Today’s Topic How ions will fragment must be considered from fundamentals (rather than rules) • Literature – Study methods and ID’d spectra for your ion class • Likely sites of protonation (or deprotonation) – Find proton affinities or acid strengths • Mobility of protons – Consider the likelihood of multiple cleavage sites – Consider multiple gas-phase configurations • Likely leaving groups How ions will fragment must be considered from fundamentals (rather than rules) • Literature – Study methods and ID’d spectra for your ion class • Likely sites of protonation (or deprotonation) – Find proton affinities or acid strengths • Mobility of protons – Consider the likelihood of multiple cleavage sites – Consider multiple gas-phase configurations • Likely leaving groups Fragmentation is a multi-step process Step #1: Create Ions (add 1 or more protons) ELECTROSPRAY O O NH H H2N NH N O OH NH O O Fragmentation is a multi-step process Step #1: Create Ions (add 1 or more protons) ELECTROSPRAY O O NH H H2N NH OH N O NH O O Step #2: Add energy (activation) O O NH H H2N NH OH N SID NH O O H O O O NH O H H2N NH N O CID O NH OH NH O O H2N NH N O OH NH O O Fragmentation is a multi-step process Step #3: Charge Directed Cleavage H O O NH H2N NH OH N O NH O Neutral + Fragment ion O b2 b3 a2 a3 What Rare the likely sites of proton location? O R3 O R5 1 NH NH H2N OH N O R2 NH O y3 R4 y2 O Model possible sites of proton location (or loss of H) in Serine O H2N CH C OH CH2 OH M + H → [M+H]+ DHrxn = -PA (M) M → [M - H]- + H+ DHrxn = DHacid (M) Model possible sites of proton location (or loss of H) in Serine O Model with CH3NH2 (methyl amine) H2N CH C OH CH2 OH M + H → [M+H]+ DHrxn = -PA (M) M → [M - H]- + H+ DHrxn = DHacid (M) Model possible sites of proton location (or loss of H) in Serine O Model with CH3NH2 (methyl amine) H2N CH C OH CH2 methyl amine PA DH acid 214.9 402.0 OH M + H → [M+H]+ DHrxn = -PA (M) M → [M - H]- + H+ DHrxn = DHacid (M) Ref: NIST Model possible sites of proton location (or loss of H) in Serine Model with CH3COOH (acetic acid) O Model with CH3NH2 (methyl amine) H2N CH C OH CH2 OH M + H → [M+H]+ DHrxn = -PA (M) M → [M - H]- + H+ DHrxn = DHacid (M) PA DH acid methyl amine 214.9 402.0 acetic acid 187.3 348.1 Ref: NIST Model possible sites of proton location (or loss of H) in Serine Model with CH3COOH (acetic acid) O Model with CH3NH2 (methyl amine) H2N CH C OH CH2 Model with CH3OH (methanol) OH M + H → [M+H]+ DHrxn = -PA (M) M → [M - H]- + H+ DHrxn = DHacid (M) PA DH acid methyl amine 214.9 402.0 acetic acid 187.3 348.1 methanol 180.3 382.0 Ref: NIST Model possible sites of proton location (or loss of H) in Serine Model with CH3COOH (acetic acid) O Model with CH3NH2 (methyl amine) H2N CH C OH CH2 Model with CH3OH (methanol) M+H→ [M+H]+ M → [M - H]- + H+ OH DHrxn = -PA (M) DHrxn = DHacid (M) PA DH acid methyl amine 214.9 402.0 acetic acid 187.3 348.1 methanol 180.3 382.0 Sites of Likely protonation: NH2 > COOH > OH deprotonation: COOH > OH > NH2 Ref: NIST How ions will fragment must be considered from fundamentals (rather than rules) • Literature – Study methods and ID’d spectra for your ion class • Likely sites of protonation (or deprotonation) – Find proton affinities or acid strengths • Mobility of protons – Consider the likelihood of multiple cleavage sites – Consider multiple gas-phase configurations • Likely leaving groups Proton mobility • Intramolecular proton transfer influences – number of site-directed fragmentations – amount of energy required for fragmentation • Intramolecular proton transfer affected by – site basicity – gas-phase configuration • Examples that follow: – Spectra of increasingly basic peptides – Overview chart demonstrating proton mobility (or lack of) – Spectra of peptide conformers 50 eV (SID) Compare Gas Phase Basicity Arg (R): 240.6 kcal/mol 40 eV (SID) Lys (K): 227.3 kcal/mol 40 eV (SID) His (H): 227.3 kcal/mol Ref: Gu, 1999 Pairwise bond cleavage between amino acids (Xxx-Zzz) Zzz 10 Most Abundant 9 8 7 6 5 4 3 2 1 Least Abundant Peptides with more basic Arg (R) vs. Lys (K) .............R 1+ .............K A D E F G H I L M N P Q S T V Y A D E F G H I L M N P Q S T V Y A D E F G H I L M N P Q S T V Y 10 9 8 7 6 5 4 3 2 1 A D E F G H I L M N P Q S T V Y Prediction based on model peptides: Selective Cleavage at Asp-Xxx will depend on number of “Mobile” Protons H His Asp H Arg (Lys) or Arg or Lys H Asp H Arg (Lys) Huang, Wysocki, Tabb, Yates Int. J. Mass Spectrom. 219, (1), 233-244, 2002 Peptides with basic Arg (R) 1 proton vs. 2 protons 1+ .............R A D E F G H I L M N P Q S T V Y A D E F G H I L M N P Q S T V Y 2+ A D E F G H I L M N P Q S T V Y 10 9 8 7 6 5 4 3 2 1 A D E F G H I L M N P Q S T V Y Gas-phase conformation influences MS-MS spectra observed O C O H2N CH CH3 C O H N CH C O O H N CH CH3 C H N CH C OH CH3 N CH3 Ala-Ala-Pro-Ala-Ala Most Natural occurring amino acids have L configuration at the chiral center (stereospecific biosynthesis) Calculated structure of [AAPAA + H]+ Many sites of possible interaction No solvent in the gas phase! Gas-phase confirmation can influence MS-MS spectra observed Peptides containing proline stereoisomers fragment differently All L-amino acids except central residue AVDPLG All L-amino acids 1+ SID spectra of [AV(L)PLG+H] (29eV) 350 1+ SID spectra of [AV(D)PLG+H] (29eV) y3 b4 100 300 80 y3 250 60 200 MH 150 + 40 100 + MH PL 50 PL 20 b4 0 a4 b3 0 0 100 200 300 m/z 400 500 0 100 200 300 m/z 400 500 Gas-phase confirmation can influence MS-MS spectra observed Peptides containing proline stereoisomers fragment differently All L-amino acids except central residue AVDPLG All L-amino acids 1+ SID spectra of [AV(L)PLG+H] (29eV) 350 1+ SID spectra of [AV(D)PLG+H] (29eV) y3 b4 100 300 80 y3 250 60 200 MH 150 + 40 100 + MH PL 50 PL 20 b4 0 a4 b3 0 0 100 200 300 m/z 400 500 0 100 200 300 m/z 400 500 Gas-phase confirmation can influence MS-MS spectra observed Peptides containing proline stereoisomers fragment differently All L-amino acids except central residue AVDPLG All L-amino acids 1+ SID spectra of [AV(L)PLG+H] (29eV) 350 1+ SID spectra of [AV(D)PLG+H] (29eV) y3 b4 100 300 80 y3 250 60 200 MH 150 + 40 100 + MH PL 50 PL 20 b4 0 a4 b3 0 0 100 200 300 m/z 400 500 0 100 200 300 m/z 400 500 Statistical analysis of cleavage at the Xxx-Pro bond 0.40 0.35 0.30 0.25 0.20 0.15 0.10 Ile Le u Ly s Gl u Ph e Ty r Al a Gl n Th r As n Ar g Tr p Se r Gl y Pr o 0.05 V al Hi s As p Relative Intensity [(a+b+y)Xxx-Pro / (a+b+y)all] 0.45 Breci, Tabb, Yates, Wysocki, (2003) Analytical Chem. 75:1963-1971 Statistical analysis of cleavage at the Xxx-Pro bond Asp, His = Selective cleavage residues Val, Ile, Leu = Bulky aliphatic side chains 0.40 0.35 0.30 0.25 0.20 0.15 0.10 Ile Le u Ly s Gl u Ph e Ty r Al a Gl n Th r As n Ar g Tr p Se r Gl y Pr o 0.05 V al Hi s As p Relative Intensity [(a+b+y)Xxx-Pro / (a+b+y)all] 0.45 Breci, Tabb, Yates, Wysocki, (2003) Analytical Chem. 75:1963-1971 How ions will fragment must be considered from fundamentals (rather than rules) • Literature – Study methods and ID’d spectra for your ion class • Likely sites of protonation (or deprotonation) – Find proton affinities or acid strengths • Mobility of protons – Consider the likelihood of multiple cleavage sites – Consider multiple gas-phase configurations • Likely leaving groups Likely Leaving Groups • Bond cleavage is dependent on various factors including: – Leaving Groups – Neighboring group participation reactions – Intermediates (ion-neutral complex) • For [M+H]+ ions the leaving group is a neutral – lower methyl cation affinity is one measure of likelihood – Compilations available in the literature – Related to proton affinity (kcal/mol) Ref: Bartmess, 1989 Proton Affinity vs. Methyl Cation Affinity Ref: Bartmess, 1989 Some fragmentation studies & basics • Few examples from literature – Cannot talk about all classes of compounds – These examples suggest problem solving approaches • Examples: – Peptides • Fragmentation mechanism • Sequence a peptide – Flavonoids – Fatty Acids – Oligonucleotides Peptides • Product ion spectra contain many types of fragment ions – – – – charge directed charge remote internal fragments immonium ions • Important for sequencing – – – – – amino acid determined from D mass between peaks in spectrum “y” ions series “b” ions series immonium ions (identify amino acids in the peptide) “a” ions (confirm “b” ion after a loss of CO, 28 amu) • Presented here: – peptide fragment ions – a mechanism for fragment ion formation – a peptide to sequence Peptide fragment ions c2 Peptide bond fragment ions b2 a2 O H2N CH C H N H CH O O H N C CH H C H O H N CH C OH H z2 R y2 H x2 CH H2N N C CH O R' Internal immonium ion R H2N CH Amino acid immonium ion Protonation occurs at amide oxygen or nitrogen O (Peptide) CH R1 C R2 H N CH O C O H N H CH C (Peptide) R3 Ref: Yalcin, 1996 Protonation occurs at amide oxygen or nitrogen O (Peptide) CH R1 C R2 H N CH O C O H H N CH C (Peptide) R3 Ref: Wysocki, 2000 A mechanism of peptide fragmentation (1) D positive charge (2) Nucleophilic attack O (Peptide) CH R1 C R2 H N CH O C O H H N CH C (Peptide) R3 Ref: Wysocki, 2000 A mechanism of peptide fragmentation (1) D positive charge (2) Nucleophilic attack O (Peptide) CH R2 H N C O CH C R1 (Peptide) O H N O C R3 R2 CH R1 CH O H H N (Peptide) H N CH C (Peptide) OH CH3 (3) cyclic intermediate Ref: Wysocki, 2000 A logical mechanism of peptide fragmentation H N (Peptide) CH O H N O R1 (3) cyclic intermediate R2 CH C (Peptide) OH CH3 H N (Peptide) R2 CH R1 O H N O CH C (Peptide) OH CH3 (4) Rearrangement Ref: Wysocki, 2000 A logical mechanism of peptide fragmentation H N (Peptide) R2 CH R1 O H2 N O CH C (Peptide) O CH3 H N (Peptide) CH R1 O R2 + H2N CH C (Peptide) O b oxazolone ion O R3 neutral Ref: Wysocki, 2000 A logical mechanism of peptide fragmentation H N (Peptide) R2 CH R1 O H2 N O CH C (Peptide) O CH3 N (Peptide) CH R1 O R2 + H H2N CH C (Peptide) O oxazolone neutral (or other structure) O R3 y ion Ref: Wysocki, 2000 Peptide fragment ions c2 Peptide bond fragment ions b2 a2 O H2N CH C H N H CH O O H N C CH H C H O H N CH C OH H z2 R y2 H x2 CH H2N N C CH O R' Internal immonium ion R H2N CH Amino acid immonium ion Peptide Sequencing amino acid 71 u. 115 u. Ala O C Asp O H N CH CH3 C O H N CH C CH2 C OH O H N mass Alanine ALA A 71.09 Arginine ARG R 156.19 Aspartic Acid ASP D 115.09 Asparagine ASN N 114.11 Cysteine CYS C 103.15 Glutamic Acid GLU E 129.12 Glutamine GLN Q 128.14 Glycine GLY G 57.05 Histidine HIS H 137.14 Isoleucine ILE I 113.16 Leucine LEU L 113.16 Lysine LYS K 128.17 Methionine MET M 131.19 Phenylalanine PHE F 147.18 Proline PRO P 97.12 Serine SER S 87.08 Threonine THR T 101.11 Tryptophan TRP W 186.12 Tyrosine TYR Y 163.18 Valine VAL V 99.14 LEARNING CHECK Peptide Sequencing Exercise Ion Current over 60 min MS/MS MS Peptide precursor ions observed by MS calculation of MH+ 571.2 m/z measured x2 1,142.4 [M+2H] - 1.0 1,141.4 [M+H] [M+ 2H]2+ m/z = 571.2 MH+ m/z = 1141.3 895.25 MS-MS of 571.2 Peptide Sequencing amino acid 71 u. 115 u. Ala O C Asp O H N CH CH3 C O H N CH C CH2 C OH O H N mass Alanine ALA A 71.09 Arginine ARG R 156.19 Aspartic Acid ASP D 115.09 Asparagine ASN N 114.11 Cysteine CYS C 103.15 Glutamic Acid GLU E 129.12 Glutamine GLN Q 128.14 Glycine GLY G 57.05 Histidine HIS H 137.14 Isoleucine ILE I 113.16 Leucine LEU L 113.16 Lysine LYS K 128.17 Methionine MET M 131.19 Phenylalanine PHE F 147.18 Proline PRO P 97.12 Serine SER S 87.08 Threonine THR T 101.11 Tryptophan TRP W 186.12 Tyrosine TYR Y 163.18 Valine VAL V 99.14 895.25 895.25 895.25 895.25 F Phe 895.25 G Gly F Phe 895.25 T Thr G Gly F Phe 895.25 D Asp T Thr G Gly F Phe 895.25 M Met D Asp T Thr G Gly F Phe 895.25 D Asp M Met D Asp T Thr G Gly F Phe 895.25 N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 Build the peptide: selected peptide = 1141.4 Estimate the number of amino acids N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 __ __ __ __ __ __ __ __ __ __ Possibly 10 amino acids Consider a y-ion series N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 __ __ __ __ __ __ __ __ __ __ 1141 1141.4 selected MH+ y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 __ __ __ __ __ __ __ __ __ __ 1141 1042 1141.4 selected MH+ 1042.6 Largest fragment observed y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 __ __ __ __ __ __ __ __ __ __ 1141 1042 y series ions N Asn 1141.4 selected MH+ 1042.6 Largest fragment observed 98.8 difference Is there an amino acid with that mass? D Asp M Met D Asp T Thr G Gly F Phe 895.25 V __ __ __ __ __ __ __ __ __ __ 1141 1042 y series ions N Asn 99 = Valine The missing amino acid What is the next mass observed? D Asp M Met D Asp T Thr G Gly F Phe 895.25 V __ 1141 __ __ __ __ __ __ __ __ __ 895 1042 y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 V F __ __ 1141 __ __ __ __ __ __ __ __ 895 1042 y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG __ __ __ 1141 __ __ __ __ __ __ __ 895 1042 y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG __ __ __ T __ 1141 __ __ __ __ __ __ 895 1042 y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG D __ __ __ T __ __ 1141 __ __ __ __ __ 895 1042 y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG DM __ __ __ T __ __ __ 1141 __ __ __ __ 895 1042 y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG DM __ __ __ T __ __ __ D __ 1141 __ __ __ 895 1042 y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 __ __ 895 1042 y series ions N Asn D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 895 1042 y series ions N Asn __ __ 262 If this is a y-ion series: 262 = smallest ion in the series what does it represent? D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 895 1042 __ __ 262 All amino acids in table are peptide bond to peptide bond y series ions 71 u. N Asn D Asp 115 u. M D Ala Met Asp O C T G Asp Thr Gly O H N CH CH3 C F Phe O H N CH C CH2 C OH O H N 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 895 1042 __ __ 262 We’re missing one N-terminal hydrogen y series ions 71 u. N Asn D Asp 115 u. M D Ala Met Asp O C T G Asp Thr Gly O H N H CH CH3 C F Phe O H N CH C CH2 C OH O H N 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 895 1042 __ __ 262 We’re missing one C-terminal OH Group y series ions 71 u. N Asn D Asp 115 u. M D Ala Met Asp O C T G Asp Thr Gly O H N H CH CH3 C H N CH O OH C H N CH2 C OH F Phe O 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 895 1042 __ __ 262 And the ionizing proton Total = 19 amu y series ions 71 u. N Asn D Asp 115 u. M D Ala Met Asp O C T G Asp Thr Gly O H N H CH CH3 C H+ H N CH O OH C H N CH2 C OH F Phe O 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 895 1042 y series ions N Asn __ __ 262 262 = smallest identified fragment - 19 = mass of H + OH + H 243 = mass of missing amino acids What amino acids? D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 895 1042 y series ions N Asn __ __ Hint: Tryptic! 262 262 = smallest identified fragment - 19 = mass of H + OH + H 243 = mass of missing amino acids What amino acids? D Asp M Met D Asp T Thr G Gly F Phe 895.25 V FG DM __ __ __ T __ __ __ D __ N __ 1141 895 1042 y series ions N Asn __ __ 262 87 = Serine 156 = Arginine 243 19 = mass of H + OH + H 262 D M D Asp Met Asp 115 = Aspartic Acid 128 = Lysine 243 19 = mass of H + OH + H 262 T G F Thr Gly Phe 895.25 V FG DM SR __ __ __ T __ __ __ D __ N __ __ __ 1141 895 1042 y series ions N Asn 262 87 = Serine 156 = Arginine 243 19 = mass of H + OH + H 262 D M D Asp Met Asp T Thr G Gly F Phe Some fragmentation studies & basics • Few examples from literature – Cannot talk about all classes of compounds – These examples suggest problem solving approaches • Examples: – Peptides • Fragmentation mechanism • Sequence a peptide – Flavonoids – Fatty Acids – Oligonucleotides Flavonoids • Common secondary plant metabolite – Including flavonoid aglycones, O-glycosides, C-glycosides (arrows) • Need reliable methodology for analysis Ref: Cuyckens 2004 Flavonoids • Group classification, chalcone aglycones, etc. Ref: Cuyckens 2004 Flavonoids • Group classification, chalcone aglycones, etc. • Reported structures 300 250 400 19 350 450 Ref: Cuyckens 2004 Ion nomenclature for flavonoid glycosides (apigenin 7-O-rutinoside illustrated) nomenclature suggested by Ma, 1997 and Domon,1988 Ion nomenclature for flavonoid glycosides (apigenin 7-O-rutinoside illustrated) A and B ions (retro-Diels-Alder reactions) are most diagnostic: - provide number and type of substituents in A & B ring Low-energy CID (Fab-Magnetic sector-Quadrupole) flavone typical 1,3B+ 0,4B+ 0,4B+-H O 2 flavonol typical 0,2A+ 0,2A+-CO 1,4A++2H 1,3B+-2H luteolin kempferol Ref: Ma, 1997 Low-energy CID (Fab-Magnetic sector-Quadrupole) luteolin (flavone) kempferol (flavonol) Low-energy CID (Fab-Magnetic sector-Quadrupole) luteolin (flavone) kempferol (flavonol) Some fragmentation studies & basics • Few examples from literature – Cannot talk about all classes of compounds – These examples suggest problem solving approaches • Examples: – Peptides • Fragmentation mechanism • Sequence a peptide – Flavonoids – Fatty Acids – Oligonucleotides Fatty Acids • Fragments formed by cleavage at alkyl bond can occur by charge remote fragmentation (generally at higher energies) – High Energy: Sector (KeV) – Low Energy: QQQ, Qtrap, FTICR – Intermediate Energy: Sector hybrids, TOF/TOF (collision gas, i.e. Xe) • Homolytic bond-fragmentation mechanism (C--C → C- + -C radicals) • 1,4-H2 elimination mechanism (Jensen, Tomer, Gross, 1985) – X = O- or OLi2+ Ref: Jensen, 1985 Fatty Acids • H-atom cleavage CRF mechanism (Claeys & Van den Heuvel, 1994) – X = OLi2+ or OBuLi+ Ref: Claeys, 1994 Stearic acid (ESI-Sector-OATOF, 400eV collision, Xe) Ref: Griffiths, 2003 Oleic acid (ESI-Sector-OATOF, 400eV collision, Xe) Ref: Griffiths, 2003 docosahexaenoic acid ANSA derivative (Sector, 400eV collision, Xe) Gaps due to double bond Ref: Griffiths, 2003 docosahexaenoic acid ANSA derivative (QQQ, 30 eV collision, Ar) Gaps due to double bond Ref: Griffiths, 2003 Some fragmentation studies & basics • Few examples from literature – Cannot talk about all classes of compounds – These examples suggest problem solving approaches • Examples: – Peptides • Fragmentation mechanism • Sequence a peptide – Flavonoids – Fatty Acids – Oligonucleotides Oligonucleotides • McLuckey Nomenclature for multiply charged anions – Gentle collisional activation = base loss – Moderate conditions = consecutive fragmentations Ref: McLuckey, 1993 Comparison of activation methods CAD (CID) vs. IRMPD (Quadrupole Ion trap) Parent-3 IRMPD: Low mass observed - PO3-1 -base anions -Complete coverage Ref: Keller, 2004 Comparison of activation methods CAD (CID) vs. IRMPD (Quadrupole Ion trap) Parent-3 CAD: Loss of base -provides little info -leads to backbone cleavages Complete coverage IRMPD: Low mass observed - PO3-1 -base anions -Complete coverage Ref: Keller, 2004 Comparison of activation methods CAD (CID) vs. IRMPD (Quadrupole Ion trap) Parent-3 CAD: Loss of base -provides little info -leads to backbone cleavages Complete coverage IRMPD: Low mass observed - PO3-1 -base anions -Complete coverage Ref: Keller, 2004 Steps for interpretation of oligonucleotide mass spectra for determination of sequence Ref: Ni, 1996 Steps for interpretation of oligonucleotide mass spectra for determination of sequence Ref: Ni, 1996 Comments on steps to interpretation Ref: Ni, 1996 Suggested Reading List & References General MS/MS NIST Chemistry WebBook http://webbook.nist.gov/chemistry/ Rossi, D.T., Sinz, M.W., Mass Spectrometry in Drug Discovery, 2002, Marcel Dekker, Inc., New York, NY. Bartmess, J.E., Gas-Phase Equilibrium Affinity Scales and Chemical Ionization MassSpectrometry, Mass Spec. Reviews,1989, 8:297-343. (Affinity Tables) McCloskey, J.A., Ed., Tandem Mass Spectrometry, Methods in Enzymology, 1990, Vol 193, Academic Press, N.Y. Peptides Gu, C., Somogyi, A., Wysocki, V.H., Medzihradszky, K.F., Fragmentation of protonated oligopeptides XLDVLQ (X=L, H, K or R) by surface induced dissociation: additional evidence for the ‘mobile proton’ model., Analytica Chem. Acta, 1999, 397:247-256 Yalcin, T., Csizmadia, I.G., Peterson, M.R., Harrison, The Structure and Fragmentation of Bn (n ≥ 3) Ions in Peptide Spectra., A.G., J. Am. Soc. Mass Spectrom., 1996, 6, 1164-1174. Wysocki, V.H., Tsaprailis, G., Smith, L., Breci, L., Mobile and localized protons: a framework for understanding peptide dissociation, J. Mass Spectrom., 2000, 35, 1399-1406. Flavonoids Cuyckens, F., Claeys, M., Mass spectrometry in the structural analysis of flavonoids, J. Mass Spectrom. 2004; 39: 1–15. Ma, Y.L., Li, Q.M., Van den Heuvel, H., Claeys, M., Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry, RCMS, 1997, 11: 1357. Suggested Reading List & References (2) Domon, B., Costello, C.E., A systematic nomenclature for carbohydrate fragmentations in FABMS/MS spectra of glycoconjugates. Glycoconj. J., 1988, 5:397. Fatty Acids & Charge Remote Griffiths, W., Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids, Mass Spec. Reviews, 2003, 22, 81-152. Jensen, N.J., Tomer, K.B., Gross, M.L., Gas phase ion decomposition occurring remote to a charge site, J.Am.Chem.Soc., 1985, 107:1863-1868. Claeys M., Van den Heuvel, H., Radical processes in remote charge fragmentations of lithium cationized long-chain alkenyl and alkadienyl salicylic acids, Biol. Mass Spec., 1994, 23:20-26. Gross, M.L., Charge-remote fragmentations – method, mechanism and applications, Int.J.Mass Spec.Ion Process., 1992, 118: 137-165. Wysocki, V.H., Ross, M.M., Charge-remote fragmentation of gas-phase ions – mechanistic and energetic considerations in the dissociation of long-chain functionalized alkanes and alkenes, Int.J.Mass Spec.Ion Process, 1991, 179-211. Oligonucleotides McLuckey, S.A., Habibi-Goudarzi, S., Decompositions of multiply Charged Oligonucleotide Anions, J.Am.Chem.Soc., 1993, 115:12085-12095. Keller, K.M., Brodbelt, J.S., Collisionally activated dissociation and infrared multiphoton dissociation of oligonucleotides in a quadrupole ion trap, Anal.Chem., 2004, 326:200-210. Ni, J.S., Pomerantz, S.C., Rozenski, J., Zhang, Y.H., McCloskey, J.A., Interpretation of oligonucleotide mass spectra for determination of sequence using electrospray ionization and tandem mass spectrometry, Anal.Chem., 1996, 68:1989-1999.