Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
The Incorporation of Unnatural Amino Acids Into Proteins by Nonsense Suppression Jason K. Pontrello October 25th, 2001 Outline Methods for Unnatural Amino Acid Incorporation into Proteins Nonsense Suppression Methodology 1. Chemically Misacylated Suppressor tRNAs • synthesis • tRNA selection 2. In Vivo Misacylated Suppressor tRNAs • tRNA modification • selection process Applications 1. Receptor/Ligand Interactions 2. Biophysical Probes 3. Caged Amino Acids 4. Protein Structure/Function Relationships Methods for Incorporation of Unnatural Amino Acids into Proteins • Total chemical synthesis (greatest freedom in residues) Largely limited to 30-50 residues • Native chemical ligation of fragments O H N H 2N SR' R1 O O N H H 2N O H N S HS R1 O N H HS H N H N N H R1 Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1997, 266, 776-779. • Post-translational modification by chemical and enzymatic means O Methods for Incorporation of Unnatural Amino Acids into Proteins • In vivo - growth in unnatural amino acid • In vitro - modification lysine/cysteine already acylated to tRNA • 4 base codons Ma, C.; Kudlicki, W.; Odom, O. W.; Kramer, G.; Hardesty, B. Biochemistry 1993, 32, 7939-7945. • Unnatural nucleotides (codon/anticodon pair) O O OH P O O N H O O P O O N H N N N O H O N H N N H H O O O O P O O O OH O P O O O O O P O O N N O C-G pair H O OH O P O O O OH P O O N N N H N N H N O O O O O P O H isoC-isoG pair O Bain, J. D.; Switzer, C.; Chamberlin, A. R.; Benner, S. A. Nature 1992, 356, 537-539. Nonsense Suppression Advantages • Ability to selectively incorporate a single unnatural amino acid at a specific site in a protein • Can be used in vitro or in vivo Limitations • Only works for a-amino acids • Cannot be used to incorporate D-amino acids • Efficiency of incorporation is variable and not well understood Translation of Proteins ATP GTP elongation factor Tu aminoacyl tRNA synthetase Translation Termination Amber (UAG), Opal(UGA), Ochre(UAA) Yeast tRNAPhe and Human eRF1 Release Factor Bertram, G.; Innes, S.; Minella, O.; Richardson, J. P.; Stansfield, I. Microbiology 2001, 147, 255-269. Nonsense Mutation nonsense mutation • No corresponding tRNA to continue normal translation of protein • Causes truncated protein products • Protein products are usually not functional The First Suggestion to Use Nonsense Suppression “Our long-term goal is to introduce 6 at specific sites in polypeptides during in vitro protein synthesis. Specifically, we intend to chemically acylate suppressor tRNAs and introduce the diazirine at amber mutation sites.” F 3C N N 6 CO2H NH2 Shih, L. B.; Bayley, H. Anal. Biochem. 1985, 144, 132-141. Nonsense Suppression Methodology Site-directed mutagenesis transcription translation Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.; Schultz, P. G. Science 1989, 244, 182-188. In vitro and in vivo Systems to Produce Protein + in vitro translational mixture in vivo Xenopus oocyte Thorson, J. S.; Cornish, V. W.; Barrett, J. E.; Cload, S. T.; Yano, T.; Schultz, P. G. Methods Mol. Biol. 1998, 77, 43-73. Dougherty, D. A. Curr. Opin. Chem. Biol. 2000, 4, 645-652. Misacylation of tRNAs • The first report chemical desulfurization cysteine-tRNACys alanine-tRNACys Chapeville, F.; Lipmann, F.; von Ehrenstein, G.; Weisblum, B.; Ray, W. J.; Benzer, S. Proc. Natl. Acad. Sci. 1962, 48, 1086-1092. von Ehrenstein, G.; Weisblum, B.; Benzer, S. Proc. Natl. Acad. Sci. 1963, 49, 669-675. • Significant contributions by Sidney M. Hecht Hecht, S. M. Acc. Chem. Res. 1992, 25(12), 545-552. Misacylation of Suppressor tRNAs chemical pdCpA-amino acid suppressor tRNA(-CA) in vivo aminoacyl tRNA synthetase suppressor tRNA amino acid Suppressor tRNA(-CA) Synthesis by Runoff Transcription • Termination by mRNA hairpin loop formation • Termination by runoff transcription Uhlenbeck, O. C.; Gumport, R. I. The Enzymes, 1982, 15, 31-58. Silber, R.; Malathi, V. G.; Hurwitz, J. Proc. Natl. Acad. Sci. 1972, 69, 3009-3013. Overview Chemical Misacylation of Suppressor tRNAs NH2 N O O P O N O NH2 O + O O N O P O O N O N T4 ligase N O O OH R suppressor tRNA(-CA) NH2 pdCpA-amino acid Gilmore, M. A.; Steward, L. E.; Chamberlin, A. R. Topics Curr. Chem. 1999, 202, 77-99. Synthesis of pdCpA NHBz NHBz N N dMTrO N dMTrO O NCCH2 CH2O O P N 1. A-Bz4, tetrazole 2. I 2, THF/H 2O N NBz2 O NCCH2 CH2O P O O N N O NCCH2 CH2O P O NCCH2 CH2O O O NH2 N N O HO 1. TsOH 2. (iPr)2NP(OCH2CH2CN) 2, tetrazole 3. I 2, THF/H 2O OBz NHBz NH2 O O P O O N O BzO N N N (76% yield) O O P O O O O O N N conc. NH4OH N N O NBz2 O NCCH2 CH2O P O O N N O (used crude) OH ( 80% yield) O BzO N N OBz Robertson, S. A.; Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.; Schultz, P. G. Nuc. Acid Res. 1989, 17(23), 9649-9660. Acylation of pdCpA with Amino Acid NH2 NH2 N O O P O N O R PG N O H O NH2 O O P O N O N O HO OH N N O O P O O CN O + DMF, nBu4N OAc - N O O O NH2 O O P O N O N O N (76-87% yield) O N N O R H O HN PG Robertson, S. A.; Ellman, J. A.; Schultz, P. G. J. Am. Chem. Soc. 1991, 113, 2722-2729. Ligation of pdCpA-aa to tRNA(-CA) NH2 O O P O O tRNA O N N NH2 N N O O N tRNA-C OH T4 RNA ligase N tRNA O N O P O O O O O O P O O NH2 NH2 N O P O O O O NH2 O O P O O N N O O O N N O NH2 O O P O O N N O O N R H H PG N O R H HN deprotect N O O R O N O HN PG O NH2 Heckler, T. G.; Chang, L.-H.; Zama, Y.; Naka, T.; Chorghade, M. S.; Hecht, S. M. Biochemistry 1984, 23, 1468-1473. Misacylation of tRNAs: Protecting Groups for Amino Acids 6-Nitroveratryl oxycarbonyl (NVOC) O O H3CO N H O O hv = 350nm O H N O H3CO O O tRNA H 2N O 1mM KOAc, pH 4.5 N tRNA R1 + H3CO R1 OCH3 Patchornik, A.; Amit, B.; Woodward, R. B. J. Am. Chem. Soc. 1970, 92, 6333-6335. Yip, R. W.; Wen, Y. X.; Gravel, D.; Giasson, R.; Sharma, D. K. J. Phys. Chem. 1991, 95, 6078-6081. 4-Pentenoyl I O H N O O O O R1 tRNA I2, H 2O H 2N O ( 92% yield) tRNA O + O R1 O Lodder, M.; Golovine, S.; Laikhter, A. L.; Karginov, V. A.; Hecht, S. M. J. Org. Chem. 1998, 63, 794-803. Madsen, R.; Roberts, C.; Fraser-Reid, B. J. Org. Chem. 1995, 60, 7920-7926. Selection of Suppressor tRNA for Chemical Misacylation • Not acylated by endogenous synthetases Unnatural Amino acid Incorporated Into protein reacylation none • High Suppression Efficiency Selection of Suppressor tRNA • No “double-sieve” editing for glycyl-tRNA synthetases Fersht, A. R.; Dingwall, C. Biochemistry 1979, 18, 2627-2631. • Two base pair changes in acceptor stem: Optimal T7 RNA polymerase promoter into the DNA template Eliminated recognition for E. coli Gly synthetase Bain, J. D.; Diala, E. S.; Glabe, C. G.; Wacker, D. A.; Lyttle, M. H.; Dix, T. A.; Chamberlin, A. R. Biochemistry 1991, 30, 5411-5421 Selection of Suppressor tRNA • Poorly recognized by the E. coli Phe synthetase • Low suppressor efficiency • E. coli ribosome affinity reduced for yeast tRNAPhe • Polar amino acids poorly incorporated • New suppressor tRNAs Cload, S. T.; Liu, D. R.; Froland, W. A.; Schultz, P. G. Chem. & Biol. 1996, 3, 1033-1038. Ellman, J.; Mendel, D.; Anthony-Cahill, S.; Noren, C. J.; Schultz, P. G. Methods in Enzymology 1991, 202, 301-336. Selection of Suppressor tRNA • Naturally introduces Glutamine at UAG codon • Modified acceptor stem mutants (THG73 and THA73) • Good suppression in vivo and in vitro Saks, M.; Sampson, J. R.; Nowak, M. W.; Kearney, P. C.; Du, F.; Abelson, J. N.; Lester, H. A.; Dougherty, D. A. J. Biol. Chem. 1996, 271, 23169-23175. Cload, S. T.; Liu, D. R.; Froland, W. A.; Shultz, P. G. Chem. & Biol. 1996, 3, 1033-1038. Selection of Suppressor tRNA T4 lysozyme at site 82 Chorismate mutase at site 88 • E. coli tRNAAsnCUA and T. thermophila tRNAGlnCUA best overall • Suppression Efficiency subject to variables not understood: Different proteins and different sites can give varied results Cload, S. T.; Liu, D. R.; Froland, W. A.; Shultz, P. G. Chem. & Biol. 1996, 3, 1033-1038. Misacylation of Suppressor tRNAs chemical pdCpA-amino acid suppressor tRNA(-CA) in vivo aminoacyl tRNA synthetase suppressor tRNA amino acid Requirements for In Vivo Misacylation • Uptake of Unnatural Amino Acid not toxic to cell • Suppressor tRNA only acylated by correct synthetase (orthogonal tRNA/synthetase pair) Saks, M. E. Proc. Natl. Acad. Sci. 2001, 98, 2125-2127. Mutation Sites to Generate Suppressor tRNATyr Library Wang, L.; Schultz, P. G. Chem. & Biol. 2001, 8, 883-890. Double Selection Screen for Orthogonal tRNA/Synthtase Pair M. jannaschii E. coli negative selection Toxic barnase tRNA library endogenous positive selection • orthogonal tRNA/ synthetase pair • orthogonal tRNAs • non-functional tRNAs ampicillin synthetase b-lactamase tRNA library Wang, L.; Schultz, P. G. Chem. & Biol. 2001, 8, 883-890. endogenous Applications of Nonsense Suppression 1. Receptor/Ligand Interactions 2. Biophysical Probes 3. Caged Amino Acids 4. Protein Structure/Function Relationships Receptor/Ligand Interactions: Nicotinic Acetylcholine Receptor (nAChR) Li, L.; Zhong, W.; Zacharias, N.; Gibbs, C.; Lester, H. A. Dougherty, D. A. Chem & Biol 2001, 8, 47-58. Synthesis of Tethered Agonists for nAChR O NMe3 O O NVOC OCH2CH2CN N H O Acetylcholine (ACh) NMe3 n O NVOC CMe3 3 OCH2CH2CN N H O n = 2,3,4,5 Li, L.; Zhong, W.; Zacharias, N.; Gibbs, C.; Lester, H. A. Dougherty, D. A. Chem & Biol 2001, 8, 47-58. Probing Activity of nAChR with Tethered Agonists O NMe3 n N H O n = 2,3,4,5 Li, L.; Zhong, W.; Zacharias, N.; Gibbs, C.; Lester, H. A. Dougherty, D. A. Chem & Biol 2001, 8, 47-58. Proposed View of nAChR Agonist Binding Site Li, L.; Zhong, W.; Zacharias, N.; Gibbs, C.; Lester, H. A. Dougherty, D. A. Chem & Biol 2001, 8, 47-58. Biophysical Probes • Unnatural amino acids as fluorescence or spin labels • Uses in: Protein-protein interactions Protein-ligand interactions Sensitive detection Protein structure determination and conformational changes Fluorescence Resonance Energy Transfer (FRET) for Investigating Receptor/Ligand Interactions GFP (donor) emission sensitized emission absorbance FRET + donor emission tag (acceptor) absorbance emission Receptor/Ligand Interactions: Neurokinin (Tachykinin)-2 Receptor (NK2) Probe 3-N-(7-Nitrobenz2-oxa-1,3-diazol- O2N 4-yl)-2,3- diaminopropionic acid (NBD-Dap) Abs 476nm Antagonist ligand N O N N H Emission 550nm CO2H PhCO-K(eTMR)-A-DW-F-DP-P-Nle-NH2 (TMR = tetramethylrhodamine) NH2 548nm 572nm Turcatti, G.; Nemeth, K.; Edgerton, M. D.; Meseth, U.; Talabot, F.; Peitsch, M.; Knowles, J.; Vogel, H.; Chollet, A. J. Biol. Chem. 1996, 271, 19991-19998. Receptor/Ligand Interactions: NK2 G-Protein Coupled Receptor (7-Transmembrane Receptor) Turcatti, G.; Nemeth, K.; Edgerton, M. D.; Meseth, U.; Talabot, F.; Peitsch, M.; Knowles, J.; Vogel, H.; Chollet, A. J. Biol. Chem. 1996, 271, 19991-19998. Biophysical Probes: Fluorescence b-galactosidase at 340nm excitation HO CO2H N H CO2H N NH2 5-Hydroxytryptophan (5-OHTrp) N 7-Azatryptophan (7-azaTrp) S O NH2 N H H N O CO2H NH2 e-Dansyllysine (dnsLys) dnsLys (13.6 nM, —) Phe (21.4 nM, ----) wild-type (10.5 nM, . . . . ) Steward, L. E.; Collins, C. S.; Gilmore, M. A.; Carlson, J. E.; Ross, J. B. A.; Chamberlin, A. R. J. Am. Chem. Soc. 1997, 119, 6-11. Biophysical Spin Labeled Probes CO2H S X-band EPR spectrum NH2 N O CO2H NH2 N O O N CO2H NH2 TOAC T4 Lysozyme (pmole) Ser44 to spin label Cornish, V. W.; Benson, D. R.; Altenbach, C. A.; Hideg, K.; Hubbell, W. L.; Schultz, P. G. Proc. Natl. Acad. Sci. 1994, 91, 2910-2914. Caged Amino Acids: Caged Tyrosine to Investigate Membrane Trafficking ATP ADP kinase O(H) PO3 -2 Mus musculus Kir 2.1 inwardly rectifying K+ channel Tong, Y.; Brandt, G. S.; Li, M.; Shapovalov, G.; Slimko, E.; Karschin, A.; Dougherty, D. A.; Lester, H. A. J. Gen. Physiol. 2001, 117, 103-118. Caged Tyrosine to Investigate Membrane Trafficking ATP ADP kinase O NO2 N H O or hv 300-350 nm O(H) PO3 -2 OH + N H O2N H O NO O Tong, Y.; Brandt, G. S.; Li, M.; Shapovalov, G.; Slimko, E.; Karschin, A.; Dougherty, D. A.; Lester, H. A. J. Gen. Physiol. 2001, 117, 103-118. Protein Structure/Function Relationship: Photochemical Protein Backbone Cleavage R1 O R2 R1 H N N H hv NO2 NH2 N H NH O O O O + O R2 NH NO O o-Nitrophenyl Glycine (Npg) England, P. M.; Lester, H. A.; Davidson, N.; Dougherty, D. A. Proc. Natl. Assoc. Sci. 1997, 94, 11025-11030. Protein Structure/Function Relationship: Photochemical Protein Backbone Cleavage Drosophila Shaker B K+ ion channel England, P. M.; Lester, H. A.; Davidson, N.; Dougherty, D. A. Proc. Natl. Assoc. Sci. 1997, 94, 11025-11030. Protein Structure/Function Relationship: Photochemical Protein Backbone Cleavage Nicotinic Acetylcholine Receptor (nAChR) England, P. M.; Lester, H. A.; Davidson, N.; Dougherty, D. A. Proc. Natl. Assoc. Sci. 1997, 94, 11025-11030. Protein Structure/Function Relationship: Firefly Luciferase HO N N S S luciferin CO2H O N N S S O Oxyluciferine dianion Mamaev, S. V.; Laikhter, A. L.; Arslan, T.; Hecht, S. M. J. Am. Chem. Soc. 1996, 118, 7243-7244. Protein Structure/Function Relationship: Firefly Luciferase O O O OH P HO HO HO O O OH N H N H N H O O O Wild-type Serine (584nm) Serine Phosphonate (584nm) HO O O N H P O O O O N H O Tyrosine (613nm) Glycosyl Serine (584nm) P O N H O Tyrosine Phosphate (593nm) O Tyrosine Phosphonate (603nm) Mamaev, S. V.; Laikhter, A. L.; Arslan, T.; Hecht, S. M. J. Am. Chem. Soc. 1996, 118, 7243-7244. Arslan, T.; Mamaev, S. V.; Mamaeva, N. V.; Hecht, S. M. J. Am. Chem. Soc. 1997, 119, 10877-10887. Protein Structure/Function Relationship: Tyrosine and Proline Analogs in Adenylate Kinase MgATP + AMP MgADP + ADP CO2H CO2H NH2 HO Tyrosine (Tyr) Tyr-95 does not have to be aromatic NH2 2,5-Dihydrophenylalanine (DiHPhe) CO2H Pro-17 can be more flexible, but not less (Aze) CO2H CO2H NH NH NH Proline (Pro) 3,4-Dehydroproline (DHP) Pipecolic Acid (Pip) CO2H NH Homopipecolid Acid (HPip) CO2H NH Azetidine 2-Carboxylic Acid (Aze) Zhao, Z.; Liu, X.; Shi, Z.; Danley, L.; Huang, B.; Jiang, R.-T.; Tsai, M.-D. J. Am. Chem. Soc. 1996, 118, 3535-3536. Protein Structure/Function Relationship: b-Branched Amino Acids in T4 Lysozyme a-Helix • Can destabilize by restriction of rotation • Can stabilize by improved side-chain van der Waals interactions CO2H CO2H NH2 CO2H NH2 L-Alanine (Ala) NH2 L-2-Aminobutanoic Acid (ABA) CO2H NH2 L-2-Aminohexanoic Acid (AHA) L-2-Aminopentanoic Acid (APA) CO2H CO2H NH2 L-Valine (Val) NH2 L-2-Amino-3,3-Dimethylbutanoic Acid (ADBA) Molecular dynamics: disruption of helix, but stabilizing hydrophobic packing ADBA destabilizes at Ser44 and stabilizes at Asn68 Cornish, V. W.; Kaplan, M. I.; Veenstra, D. L.; Kollman, P. A.; Schultz, P. G. Biochemistry 1994, 33, 12022-12031. Protein Structure/Function Relationship: HIV Protease and Aspartic Acid Analogs Short, G. F. III; Laikhter, A. L.; Lodder, M.; Shayo, Y.; Arslan, T.; Hecht, S. M. Biochemistry 2000, 39, 8768-8781. Aspartic Acid Analogs O O H 3C OH H 2N CO2H H 2N O H 3C OH CO2H CO2H H 2N O OH OH H 3C H 2N CO2H CO2H O OCH2CH=CH2 CO2H OCH3 H 2N CO2H O OH N H H 3C H 3C H 2N O H 3C CO2H O OCH2CH=CH2 H 2N OH H 2N O O H 3C H 3C CO2H SO3 H OH N H CO2H H 2N CO2H PO3 H2 H 2N CO2H Short, G. F. III; Laikhter, A. L.; Lodder, M.; Shayo, Y.; Arslan, T.; Hecht, S. M. Biochemistry 2000, 39, 8768-8781. Binding Pockets of HIV Protease by Molecular Dynamics 4.7 Å 7.0 Å Val 82 O Ile 84 O H 3C OH 7.8 Å Asp 25 (+deriv.) CO2H H 2N aspartic acid 7.7 Å O H 3C 7.8 Å H 2N 6.2 Å H 3C H 3C OH 7.0 Å CO2H threo 87% decrease 4.3 Å OH CO2H erythro 29% increase 4.1 Å 4.2 Å 5.3 Å H 2N 8.0 Å H 2N O OH CO2H dimethyl no activity Short, G. F. III; Laikhter, A. L.; Lodder, M.; Shayo, Y.; Arslan, T.; Hecht, S. M. Biochemistry 2000, 39, 8768-8781. Conclusion Nonsense Suppression Applications: • Receptor/Ligand Interactions • Biophysical Probes • Caged Amino Acids • Protein Structure/Function Relationships Unnatural Amino Acids Fluorescent/spin labels Tethered agonists Phosphorylated/glycosylated Proline derivatives Thanks • Kiessling Group • 3rd years Jen , Val, Whitney, Margaret, Chris • Periodic Table tie for holding up my pants