Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Associations of amphipathic molecules in aqueous solutions. Ionic Mobilities in H2O at 25°C. Mean lifetime of a hydronium ion is 10-12 s This makes proton transfer reactions (acid base reactions) among the fastest in aqueous solutions. Acid Base Chemistry Conjugate acid Conjugate base HA + H2O K= H3O+ + A[H3O+][A-] [HA][H2O] +][A-] [H Ka = K[H2O] = [HA] [H2O] = 55.5M [H3O+] = [H+] K = dissociation constant is a measure of the strength of an acid Water as an acid Conjugate acid Conjugate base H2O K= H+ + OH[H+][OH-] [H2O] [H2O] = 55.5M Kw = K[H2O] = [H+][OH-] Pure water contains equimolar hydroxide ions and protons At 25ºC Kw = 10-14 M2 [H+] = [OH-] = 10-7 M Henderson Hasselbach and pH pH = -log[H+] [H+] = Ka([HA]/A-]) pH = -log Ka + log ([A-]/[HA]) pH = pKa + log ([A-]/[HA]) Titration curve of a 1L solution of 1M H3PO4. Thermodynamics First Law Energy is conserved ∆U = Ufinal - Uinitial = q - w q = heat absorbed w = work done ∆U = 0 for any process that returns to its initial state Exothermic processes release heat Endothermic processes gain heat Enthalpy is defined as: H = U + PV ∆H = ∆U + P∆V P = pressure (constant) ∆V = volume (insignificant) ∆H = ∆U = q - w ∆H = q w often is zero in biological systems q = heat transferred to/from the surroundings Thermodynamics Second Law Entropy increases ∆Suniverse > 0 N molecules of gas 2N equally probable ways of distributing them Two bulbs of equal volumes connected by a stopcock. N! WL = L!(N-L)! WL = number of different ways of placing L of the N molecules in the left bulb Probability = WL/2N For any N the most probable state is L = N/2 (half the gas in the left bulb) If N = 1023 the probability that the # of molecules in the left and right bulbs differ by 1 molecule is 10 billion in 10-434 WL = number of different ways of placing L of the N molecules in the left bulb N! WL = L!(N-L)! 9 positions, 4 identical balls Page 54 W = 9•8•7•6•5•4•3•2•1 = 126 (4•3•2•1)(5•4•3•2•1) Only 4 out of 126 possible arrangements have 4 balls touching each other N! WL = L!(N-L)! W is approximately 107x1022 if the previous experiment uses a mole of real gas To make this more manageable entropy was “invented” S = kB ln W In a system where energy does not change a spontaneous process has ∆S > 0 This does not mean that order cannot exist In a localized system. It means that order can only exist at the expense of surrounding systems. Biology gains order by disordering the nutrients that it consumes. ∆Ssystem + ∆Ssurroundings = ∆Suniverse > 0 Free Energy G = H - TS ∆G = ∆H - T∆S ∆G ≤ 0 for a spontaneous process Exergonic Endergonic ∆G < 0 ∆G > 0 Spontaneous Must input energy Variation of Reaction Spontaneity (Sign of ∆G) with the signs of ∆H and ∆S. How do we drive endergonic processes? Greek lettering scheme used to identify the atoms in the glutamyl and lysyl R groups. An a-amino acid COOH C a COO- HS NH3+ H C a NH3+ H HS C a HS +H3N O- a C O Fischer Projection Preferred representation Glycine - The Simplest a-Amino Acid H C CH3 a NH3+ H COOC a +H3N CH3 b NH3+ (X) CH3 Ca H L-a-alanine or (-)- a -alanine Alanine COO- NH3+ -OOC O- H(Z) C O (W) Ca CH3 (Y) (S)-a-alanine S = counterclockwise g1 COOH C a b CH3 a-valine L-(-)-a-valine S-a-valine Valine CH g2 CH3 NH3+ COOH a C NH3+ CH3 (X) NH3+ -OOC CH H3C CH3 H CH Ca O- Ca +H3N H(Z) CH3 C O CH H3C (Y) CH3 (W) d1 CH3 COOH C b CH2 a CH g COOH C Leucine CH3 d2 NH3+ a a -leucine L-a-leucine (-) -a-leucine S-a-leucine CH3 CH2 CH (X) CH3 NH3+ NH3+ -OOC H3C CH H +H3N Ca CH2 C a H(Z) CH3 (Y) O- C O CH2 CH H3C CH3 (W) Isoleucine 2 chiral centers COO- CH3 2 g H C a b C CH2 g1 d1 CH3 (2S,3S)-isoleucine NH3+ H CH2CH3 H3C -OOC H CH3 a C +H3N C H H C Ca CH2CH3 +H3N H O- C O Isoleucine 2 chiral centers (2S,3S)-isoleucine (X) NH3+ -OOC (W) (W) Ca H(Z) (Y) H C H3CH2C CH3 Ca H(Z) Cb CH3 (X) CH2CH3 Both centers are S (Y) Methionine is non-polar but S-atom is a-methionine reactive L-methionine (-)-a-methionine S-methionine COOH C a b CH2 g CH2 d S e CH3 NH3+ -OOC H C +H3N a CH2 CH2 S CH3 Methionine is non-polar but S-atom is a-methionine reactive L-methionine (-)-a-methionine S-methionine H CH2 Ca +H3N CH2 S CH3 OC (X) NH3+ -OOC (W) O H(Z) Ca (Y) CH2CH2SCH3 a-proline L-proline (-)-a-proline S-proline Proline is a cyclic imino acid -OOC COOH C H + C CH2 N a H2 CH2 HN 2 H2 C C H2 b a g e CH2 d CH2 + CH2 H H2C C N+ H2 (X) CH2 a + -OOC (W) OC H N2 H(Z) Ca CH2 CH2 O (Y)H2C a-phenylalanine L-phenylalanine (-)-a-phenylalanine S-phenylalanine COOH a C NH3+ Large non-polar aromatic d1 -OOC CH2 a H C +H3N b g CH2 e1 z1 d2 e2 Large and non-polar a-phenylalanine L-phenylalanine (-)-a-phenylalanine S-phenylalanine (X) NH3+ -OOC (W) H(Z) Ca H CH2 C +H3N a C O (Y) CH2 O- a-tryptophan L-tryptophan (-)-a-tryptophan S-tryptophan Large and non-polar COOH C a NH3+ CH2 z3 e3 h2 NH -OOC a H C +H3N b g CH2 d1 d2 e2 N e1 H z2 a-tryptophan L-tryptophan (-)-a-tryptophan S-tryptophan Large and non-polar H N (X) NH3+ -OOC (W) H(Z) H C +H3N Ca CH2 a O- (Y) CH2 C O HN a-tyrosine L-tyrosine (-)-a-tyrosine S-tyrosine Uncharged Polar Amino Acids COOH C a CH2 OH NH3+ d1 -OOC H C a + NH3 b CH2 g e1 z1 OH h d2 e2 a-tyrosine L-tyrosine (-)-a-tyrosine S-tyrosine Uncharged Polar Amino Acids OH NH3+ -OOC (X) (W) H(Z) Ca (Y) CH2 H CH2 Ca +H3N OC O OH a-serine L-serine (-)-a-serine S-serine Uncharged Polar Amino Acids COOH C -OOC CH2 OH NH3+ a H a C b g CH2 OH (X) NH3+ -OOC (W) + NH3 OH H Ca CH2 C +H3N H(Z) a OC O (Y) CH2 OH Uncharged Polar Amino Acids cysteine is often charged a-cysteine L-cysteine (-)-a-cysteine R-cysteine -OOC NH3+ -OOC H C a b g CH2 SH (W) (Y) H(Z) Ca + NH3 SH COOH C a NH3+ H CH2 CH2 +H3N OC O CH2 SH SH C a (X) a-asparagine L-asparagine (-)-a-asparagine S-asparagine Uncharged Polar Amino Acids O C H O b CH2 a H C NH2 d2 NH3 +H3N a O- C O C g + CH2 C d1 -OOC NH2 NH3+ -OOC (X) (W) H(Z) COOH a C NH3+ Ca O (Y) CH2 C CH2 NH2 C O NH2 a-glutamine L-glutamine (-)-a-glutamine S-glutamine Uncharged Polar Amino Acids O C H H2C e1 -OOC a C b g CH2 CH2 O d H NH2 e2 NH3 H C a C O- NH3+ -OOC (X) (W) H(Z) O Ca COO- a CH2 C C +H3N + NH2 O (Y) CH2 CH2 CH2 C CH2 NH3+ NH2 C O NH2 -OOC H a Threonine has 2 chiral centers H (2S,3R)-threonine b C C CH3 g2 +H3N H H OH H g1 -OOC a C NH3+ +H3N OH C Ca H C CH3 OH OC CH3 O Threonine has 2 chiral centers (2S,3R)-threonine NH3+ -OOC (X) (W) Ca (X) CH3 (Y) H(Z) Ca H(Z) (Y) HO C CH3 H Cb (W) OH a-arginine L-arginine (-)-a-arginine S-arginine Charged amino acids H h2 -OOC H C a b g CH2 CH2 d CH2 z e NH NH2 C +H3N C NH3 h1 -OOC -OOC NH3+ CH2 CH2 CH2 C (X) NH3+ H(Z) NH H2N O- NH2+ a C a C CH2 O NH2+ + H CH2 NH2+ NH CH2 (W) NH2+ Ca NH2 (Y) H2 C H2C C H2 C N H NH2 a-lysine L-lysine (-)-a-lysine S-lysine -OOC H C a b CH2 g d CH2 CH2 Charged amino acids e CH2 H z NH3+ + Ca a OC -OOC C NH3+ CH2 CH2 +H3N NH3 H CH2 CH2 O CH2 CH2 CH2 CH2 NH3+ -OOC (X) NH3+ NH3+ H(Z) (W) Ca (Y) H2C NH3+ CH2 CH2 CH2 a-histidine L-histidine (-)-a-histidine S-histidine -OOC HN H d1 N b a H Charged amino acids C e1 H g CH2 N + NH3 d2 e2 + H H N H C a CH2 C a O- C +H3N -OOC -OOC NH+ O (X) NH3+ H(Z) (W) Ca CH2 NH+ (Y) H2C H N NH3+ NH+ a-glutamate L-glutamate (-)-a-glutamate S-glutamate Charged amino acids O H 2C e1 -OOC H C b g CH2 CH2 C a O O- C d O NH3+ -OOC (X) (W) e2 COO- NH3+ C O- NH3 Ca CH2 +H3N + H H O a H(Z) Ca (Y) CH2 CH2 CH2 O- C C CH2 OC O O- a-aspartate L-aspartate (-)-a-aspartate S-aspartate d1 -OOC O H C CH2 O C g NH3 CH2 C O- + a O -OOC O C NH3+ CH2 NH3+ (X) (W) H(Z) a H O- C +H3N d2 COO- O- C H b a Charged amino acids C Ca (Y) CH2 O- C O O- Alanine Cysteine Glycine Histidine Isoleucine Leucine Methionine Proline Serine Threonine Valine Ala Cys Gly His Ile Leu Met Pro Ser Thr Val A C G H I L M P S T V Arginine Asparagine Aspartate Glutamate Glutamine Lysine Phenylalanine Tryptophan Tyrosine Arg Asn Asp Glu Gln Lys Phe Trp Tyr R N D E Q K F W Y Non-standard encoded amino acids -OOC H C a CH2 Selenocysteine Sec, U SeH + NH3 -OOC O H C a CH2 CH2 CH2 CH2 H N CH3 NH3+ N Pyrrolysine Pyl, O Amino acids bear structural similarity to each other Asparate Glutamate d1 -OOC H C b CH2 C g H O- + NH3 d2 Asparagine -OOC b CH2 C + NH3 C O a b g CH2 CH2 NH3+ d e2 Glutamine e1 O -OOC C g NH2 d2 C O- d1 O a H -OOC O a e1 H a C b g CH2 CH2 + NH3 d C NH2 e2 Amino acids bear structural similarity to each other Cysteine Selenocysteine -OOC -OOC H C a b g CH2 SH a H C CH2 SeH + NH3 + NH3 Threonine Serine -OOC H a H -OOC b C C CH3 g2 +H3N OH g1 a H C + NH3 b g CH2 OH Amino acids bear structural similarity to each other Tyrosine d1 -OOC H C b a CH2 + NH3 g e1 z1 OH h d2 e2 Phenylalanine d1 -OOC a H C +H3N b g CH2 e1 z1 d2 e2 Amino acids bear structural similarity to each other H H Histidine H N N CH2 CH2 CH2 H CH2 N+ Asparagine O H H Histidine H Histidine N N+ N Glutamine HH O HH H H CH2 + N N Arginine N CH2 H Histidine N NH2+ N CH2 CH2 Arginine +H N 2 + N H H Amino acids bear structural similarity to each other Histidine H N CH2 CH2 Tryptophan N+ N HH Amino acids bear structural similarity to each other OH Phenylalanine Tyrosine H3C CH 2 2 CH CH3 CHCH 2 2 Phenylalanine Leucine N • Glutamate, glycine N H2N – neurotransmitters • D-serine N H N – neurotransmitter • S-adenosylmethionine – methyl transfer H OH H OH O -OOC H C NH3+ H CH2 CH2 S CH3 Page 77 Non-peptide amino acids Titration curve of glycine. These values are the pKa’s of the free amino acids in aqueous solution. As we shall see later an aqueous solution may not represent reality O C -O H H N CH2 O- C +H3N N C O H O CH2 These values are the pKa’s of the free amino acids in aqueous solution. As we shall see later an aqueous solution may not represent reality Hydrophobic pocket O C OH