Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Evolution of mitochondrial genomes mediated by DNA replication, transcription and translation Xuhua Xia [email protected] http://aix1.uottawa.ca/~xxia Vertebrate mitochondria • Endosymbiotic origin (Lang et al. 1997. Nature:493) – Amitochondriate retortamonads – Jakobid assemblage – Reclinomonas americana: a heterotrophic flagellate, with a mitochondrial genome: • 69034 bp • 97 genes • 4 genes specifying a multisubunit, eubacterial-type RNA polymerase • Vertebrate mitochondria: – – – – ~16500 bp 13 protein-coding genes 2 rRNA genes ~22 tRNA genes • Genomes change. What factors govern genomic evolution? – Mutation – Selection Xuhua Xia Slide 2 Transcription, translation and DNA replication Gene 1 Polycistronic mRNA Ribosome Gene 2 Gene 3 RNA polymerase GCC~tRNA~Gly UCC~tRNA~Gly Protein UCC~tRNA~Gly UCC~tRNA~Gly Xuhua Xia Slide 3 DNA Replication in VertMT Parental H OH Parental L Daughter H OL Daughter L The parental Hstrand is left singlestranded for an extended period of time during mtDNA duplication (D.A. Clayton and colleagues, but see Holt et al. 2000 and Yang et al. 2003) Xuhua Xia Slide 4 Spontaneous deamination • Sancar and Sancar 1988; Frederico et al. 1990; Lindahl 1993: – Deamination of A leads to hypoxanthine that forms stronger base pair with C than with T, generating an A.TG.C mutation. – Deamination of C leads to U, generating C.GU.A mutations. – Among these two types of spontaneous deamination, the CU mutation occurs more frequently than the AG mutation. – The spontaneous deamination rate is about 100 times greater in the single-stranded DNA than in double-stranded DNA. • Tanaka and Ozawa 1994; Jermiin et al. 1995; Perna and Kocher 1995; Reyes at al. 1998: – H-strand rich in G and T. – L-strand rich in A and C. Xuhua Xia Slide 5 Spontaneous Deamination NH 2 NH2 NH2 O CH3 N N N N H N H N Adenine N NH2 Guanine N H N H O Cytosine O Methylcytosine H2O H2O H2O H2 O O NH3 NH3 NH3 NH3 O N N NH O O CH3 N N NH N H N Hypoxanthine (Pair with C) Xuhua Xia N NH H N H N Xanthine (Pair with C) O N H Uracil (Pair with A) N O N H Thymine (Pair with A) Slide 6 O Effect of Spontaneous Deamination L: 5’ATG CAA CCG AAT AGC …… TAA 3’ H: 3’TAC GTT GGC TTA TCG …… ATT 5’ L: 5’ATG CAA CCA AAC AAC …… TAA 3’ H: 3’TAC GTT GGU TTG TUG …… ATT 5’ Hb-A: Val-His-Leu-Thr-Pro-Glu-Glu…… Hb-S: Val-His-Leu-Thr-Pro-Val-Glu…… H-strand rich in G and T. L-strand rich in A and C. Position-dependence: The effect most visible at the 3rd codon position Xuhua Xia Slide 7 Mitochondrial Genetic Code Xuhua Xia Codon Amino acid UUU UUC UUA UUG Codon Amino acid Phe Phe Leu Leu UCU UCC UCA UCG CUU CUC CUA CUG Leu Leu Leu Leu AUU AUC AUA AUG GUU GUC GUA GUG Codon Amino acid Codon Amino acid Ser Ser Ser Ser UAU UAC UAA UAG Tyr Tyr Stop Stop UGU UGC UGA UGG Cys Cys Trp Trp CCU CCC CCA CCG Pro Pro Pro Pro CAU CAC CAA CAG His His Gln Gln CGU CGC CGA CGG Arg Arg Arg Arg lle Ile Met Met ACU ACC ACA ACG Thr Thr Thr Thr AAU AAC AAA AAG Asn Asn Lys Lys AGU AGC AGA AGG Ser Ser Stop Stop Val Val Val Val GCU GCC GCA GCG Ala Ala Ala Ala GAU GAC GAA GAG Asp Asp Glu Glu GGU GGC GGA GGG Gly Gly Gly Gly Slide 8 Mitochondrial Codon Usage • The H-strand is the template strand for 12 of the 13 proteincoding genes in mammalian mitochondrial genome • The RNA transcripts from the H-strand is co-linear with the L-strand and should be rich in A and C at the third codon position. • Codon families and predictions – Two-fold degenerate: • Ending with A or G: e.g., AUA and AUG for methionine. Should end with A • Ending with C or U: e.g., AUC and AUU for isoleucine. Should end with C – Four-fold degenerate: e.g., GGN for glycine. Should end with either A or C Xuhua Xia Slide 9 Two-fold A- or G-ending codons Codon AA ObsFreq RSCU AGA * 1 0.444 AGG * 0 0 Codon AA ObsFreq RSCU UUA L 100 1.038 UUG L 10 0.104 UAA UAG * * 7 3.111 1 0.444 AUA AUG M M 214 1.705 37 0.295 GAA GAG E E 73 1.698 13 0.302 CAA CAG Q Q 79 1.837 7 0.163 AAA AAG K K 88 1.814 9 0.186 UGA UGG W W 91 9 1.82 0.18 12 CDS sequences (excluding ND6), Cow mtDNA. RSCU: Relative Synonymous Codon Usage Xuhua Xia Slide 10 Two-fold C- or U-ending codons Codon AA ObsFreq RSCU UGC C 16 1.524 UGU C 5 0.476 Codon AA ObsFreq RSCU AUC I 160 1.029 AUU I 151 0.971 GAC GAU D D 46 1.438 18 0.563 AAC AAU N N 102 1.291 56 0.709 UUC UUU F F 130 1.156 95 0.844 AGC AGU S S 42 0.955 9 0.205 CAC CAU H H 63 1.355 30 0.645 UAC UAU Y Y 72 1.125 56 0.875 12 CDS sequences (excluding ND6), Cow mtDNA. RSCU: Relative Synonymous Codon Usage Xuhua Xia Slide 11 Four-fold codons Codon GCA GCC GCG GCU AA ObsFreq A 102 A 90 A 1 A 48 GGA GGC GGG GGU G G G G 93 60 19 21 CUA CUC CUG CUU L L L L 283 95 29 61 RSCU 1.693 1.494 0.017 0.797 Codon CGA CGC CGG CGU AA ObsFreq RSCU R 42 2.71 R 11 0.71 R 3 0.194 R 6 0.387 1.927 1.244 0.394 0.435 UCA UCC UCG UCU S S S S 2.938 0.986 0.301 0.633 ACA ACC ACG ACU T T T T 98 64 4 47 2.227 1.455 0.091 1.068 150 2 95 1.267 14 0.187 41 0.547 CCA P 85 1.789 GUA V 82 1.964 CCC P 63 1.326 GUC V 46 1.102 CCG P 3 0.063 GUG V 9 0.216 CCU P 39 0.821 GUU V 30 0.719 12 CDS sequences (excluding ND6), Cow mtDNA. RSCU: Relative Synonymous Codon Usage Xuhua Xia Slide 12 Ribonucleotide concentration rATP 1890 rCTP 53 rGTP 190 rUTP 130 Measured in the exponentially proliferating chick embryo fibroblasts, 2hrs, in moles 10-12 per 106 cells. The difference is expected to be more extreme in mitochondria. NNA would seem to be a more efficient codon than NNC XIA, X., 1996. Genetics 144: 1309-1320. Xuhua Xia Slide 13 Transcription and Translation Gene 1 Gene 2 Polycistronic mRNA Ribosome Gene 3 RNA polymerase GCC~tRNA~Gly UCC~tRNA~Gly Protein UCC~tRNA~Gly Initiation: Met-Gly-... UCC~tRNA~Gly Elongation: Mn + M Mn+1 Xuhua Xia Slide 14 Translational Hypothesis: Illustration Protein: Gly-Gly-Gly-Gly-... mRNA 1: GGA GGA GGA GGA GGA GGA GGA mRNA 2: GCC~tRNA~Gly UCC~tRNA~Gly UCC~tRNA~Gly UCC~tRNA~Gly UCC~tRNA~Gly UCC~tRNA~Gly UCC~tRNA~Gly UCC~tRNA~Gly UCC~tRNA~Gly GGC GGC GGC GGC GGC GGC GGC • There are two kinds of tRNA molecules, one with the anticodon GCC and the other with the anticodon UCC. The former is rare and the latter abundant. • Which mRNA will be translated faster? • (We have assumed no depletion of UCC-tRNA-Gly) Xuhua Xia Slide 15 E. Coli Data (highly expressed genes) AA Gly Ala Arg Ile Thr Gln IDtRNA Codon 3 GGU,GGC 2 GGA,GGG 1 GGG 1 GCU,GCA,GCG 2 GCC 2(1) CGU,CGC,CGA CGG CGG 1 AUU,AUC 2 AUA 1+3 ACU,ACC 2 ACG 4 ACA,ACG 2 CAG 1 CAA NtRNA tRNA p M QM 4 1.1 0.82 0.995 1 0.15 1 0.1 3 1 0.77 0.964 2 0.3 4 0.9 0.97 1 1 0.025* 3 1 0.95 1 1 0.05 2 0.8 0.8 0.992 1 0.1 1 0.1 2 0.4 0.57 0.954 2 0.3 PM – proportion of the most abundant tRNA QM – proportion of the codon(s) recognized by the most abundant tRNA. Xuhua Xia Ikemura 1981; Mouy and Gautier 1982; Kimura, M. 1983. Xia, X. 1998. Genetics 149: 37-44 Slide 16 tRNA Anticodon and Codon Usage • Classical view: tRNA concentration is fixed and codon usage evolves to adapt to relative tRNA availability • In vertebrate mtDNA, the evolution of codon usage is constrained by the AC-biased mutation on the L-strand, with most codons ending with either A or C. • tRNA anticodons need to evolve to accommodate the mutation-mediated codon usage bias. • Predictions based on this selection hypothesis: – For two-fold degenerate NNY and NNR codons which end mainly in C and A, respectively, the wobble site of the tRNA anticodon should be G and U, respectively. – For four-fold degenerate NNN codons which end mainly in A, the wobble site of the anticodon should be U. Xuhua Xia Slide 17 Alternative mutation hypothesis • Given the wobble-paring, the wobble site is perhaps neutral and may be shaped by ACbiased mutation on the Lstrand and GT-biased mutation on the H-strand. • Predictions: – The wobble site of the 8 tRNA genes collinear with the H strand should be mostly G or U – The wobble site of the 14 tRNA genes collinear with the L strand should be mostly A or C Xuhua Xia Slide 18 AC% in tRNA tRNA Pro Gln Glu Ala Ser1 Asn Cys Tyr Ile Arg Asp Thr Leu1 Met Gly Leu2 His Ser2 Lys Val Trp Phe Xuhua Xia Bos 0.379 0.347 0.406 0.377 0.394 0.397 0.463 0.500 0.522 0.507 0.507 0.565 0.547 0.522 0.507 0.521 0.571 0.500 0.522 0.582 0.582 0.612 Erpetoichthys 0.429 0.380 0.420 0.391 0.394 0.466 0.470 0.451 0.493 0.486 0.536 0.521 0.533 0.529 0.557 0.548 0.493 0.591 0.562 0.549 0.571 0.620 Masturus 0.414 0.437 0.377 0.420 0.437 0.397 0.448 0.423 0.514 0.551 0.507 0.514 0.541 0.536 0.521 0.548 0.536 0.529 0.573 0.556 0.583 0.603 Mus 0.373 0.380 0.377 0.449 0.435 0.437 0.455 0.522 0.493 0.485 0.557 0.507 0.533 0.551 0.574 0.563 0.612 0.525 0.538 0.580 0.582 0.574 Slide 19 Transfer RNA (tRNA) Note that the 3’-end CCA is posttranscriptionally added by tRNA nucleotidyltransferase (tNtase). Xuhua Xia Slide 20 Standard and Non-standard Base Pairing A/T G/U G/C Xuhua Xia Slide 21 Anticodon Loop 5’ 3’ A-U G-C C-G U-A G-C A-U A C A U UCC 3-AGG-5 Xuhua Xia Anticodon Codon (Gly) Slide 22 Find tRNA Anticodon >MYPU_TRNA_HIS GTGAATATGGCGAAGGGGTCAACGCATCGGGTTGTGGTTCCGACATTCGCGGGTTCGAATCCCGTTATTCACCCCA >MYPU_TRNA_LEU_1 CCCGAGTGGTGAAATGGCAGACACAGTTGACTCAAAATCAACCGCTTCACGGCGTGCTGGTTCAAGTCCAGTCTCGG GCACCA >MYPU_TRNA_CYS GGCACCATAGCCAAATGGGCAAGGCATGGGTCTGCAACACCCTGATTACCGGTTCGAGTCCGGTTGGTGCCTCCA 5’---UCGGG ||||| 3’---AGCCU Xuhua Xia UU UG Slide 23 tRNA anticodons (AG-ending codons) tRNA tRNA-Cys tRNA-Asp tRNA-Phe tRNA-His tRNA-Ile tRNA-Asn tRNA-Tyr Anticodon GCA (C) GUC GAA GUG GAU GUU (C) GUA (C) WC Cod UGC GAC UUC CAC AUC AAC UAC AA Cys Asp Phe His Ile Asn Tyr Anticodon Stem-Loop 23UUGAAUUGCAAAUUCAG39 24UAAUUUUGUCAAAGUUA40 25AGGCACUGAAAAUGCCU41 24UUAGAUUGUGAAUCUAA40 23UUACUUUGAUAGAGUAA39 27UUUAGCUGUUAACUAAA43 23UUAGACUGUAAAUCUAA39 tRNA-Gln tRNA-Glu tRNA-Lys tRNA-Leu tRNA-Met tRNA-Trp UUG (C) UUC (C) UUU UAA CAU UCA CAA GAA AAA UUA AUG UGA Gln Glu Lys Leu Met Trp 26AAGAGTTTTGGATTCTT43 23GAUGGUUUUUCAUAUCAUU41 21CUAACCUUUUAAGUUAG37 28AUAAAACUUAAACUUUUAU46 24UCGGGCCCAUACCCCGA40 24AGAGCCUUCAAAGCCCU40* tRNA-Pro tRNA-Ala tRNA-Gly tRNA-Leu tRNA-Arg tRNA-Ser tRNA-Thr tRNA-Val UCC (C) UGC (C) UCC UAG UCG UGA (C) UGU UAC GGA GCA GGA CUA CGA UCA ACA GUA Pro Ala Gly Leu Arg Ser Thr Val 24TCAGCTTTGGGGGTTGA40 22UGGUUGAUUUGCAUUCAAUUG42 24AGCUGACUUCCAAUCAGCU42 27UUGGUCUUAGGAACCAA43 25AAUGAUUUCGACUCAUU41 25UGUUGGCUUGAAACCAAUA43 23CUGGUCUUGUAAACCAG39 24UCCAGUUUACACCUAGA40* Xuhua Xia Alternative hypothesis: Wobble Capacity Hypothesis. Slide 24 Initiation and Elongation • Met codon usage from the 12 CDSs: AUA 214 AUG 37 • Met-tRNA anticodon: CAU favoring the AUG codon • Two choices for the Met anticodon evolution: – UAU (matching AUA) to increase the translation elongation rate – CAU (matching AUG) to increase the translation initiation rate • Natural selection has chosen CAU. • Translation initiation is important. • Alternative explanation: C in anticodon CAU modified to 5formylcytidine which may allow it to pair with both A and G (Moriya et al., 1994; Matsuyama et al., 1998) Xuhua Xia Slide 25 Summary • mtDNA replication leaves the H-strand single stranded for an extended period, leading to elevated C U mutations on the H-strand and G A mutations on the L-strand. • This biased mutation spectrum leads to differential codon usage bias for protein-coding genes residing on the two strands consistent with the differential mutation pressure. • The biased codon usage leads to anticodon evolution to optimize transcription and translation. • Increasing translation initiation rate is important in genome evolution • Mutation and selection to increase the transcription and translation rates are important determinants of codonanticodon adaptation in vertebrate mitochondrial genomes. Xuhua Xia Slide 26 ND6 Gene Xuhua Xia Slide 27 Cow MtDNA (AG-ending codons) Codon AA ObsFreq RSCU AGA * 0 0 AGG * 0 0 Codon AA ObsFreq RSCU UUA L 10 3.158 UUG L 6 1.895 UAA UAG * * 1 0 4 0 AUA AUG M M 4 0.727 7 1.273 GAA GAG E E 5 1.111 4 0.889 CAA CAG Q Q 0 1 0 2 AAA AAG K K 2 2 UGA UGG W W 1 3 0.5 1.5 1 1 ND6 sequence Xuhua Xia Slide 28 Cow MtDNA (CU-ending codons) Codon AA ObsFreq RSCU UGC C 0 0 UGU C 1 2 Codon AA ObsFreq RSCU AUC I 0 0 AUU I 14 2 GAC GAU D D 0 4 0 2 AAC AAU N N 0 4 UUC UUU F F 3 12 0.4 1.6 AGC AGU S S 1 0.545 3 1.636 CAC CAU H H 0 0 0 0 UAC UAU Y Y 2 8 0 2 0.4 1.6 ND6 sequence Xuhua Xia Slide 29 Cow MtDNA (N-ending codons) Codon CGA CGC CGG CGU AA ObsFreq RSCU 0 0 R 0 0 R 0 0 R 4 1 R 0.615 0.308 1.846 1.231 UCA UCC UCG UCU S S S S 1 1 1 4 0.545 0.545 0.545 2.182 L L L L 2 0.632 0 0 0 0 1 0.316 ACA ACC ACG ACU T T T T 3 1 1 3 1.5 0.5 0.5 1.5 P P P P 0 0 0 3 0 0 0 4 GUA GUC GUG GUU V V V V Codon GCA GCC GCG GCU AA ObsFreq 1 A 1 A 1 A 4 A RSCU 0.571 0.571 0.571 2.286 GGA GGC GGG GGU G G G G 4 2 12 8 CUA CUC CUG CUU CCA CCC CCG CCU 5 0.87 2 0.348 6 1.043 10 1.739 ND6 sequence Xuhua Xia Slide 30 Wobble Capacity Hypothesis • Recall predictions based on the selection hypothesis: – For two-fold degenerate NNY and NNR codons which end mainly in C and A, respectively, the wobble site of the tRNA anticodon should be G and U, respectively. – For four-fold degenerate NNN codons which end mainly in A, the wobble site of the anticodon should be U. • Why the wobble site should be G or U according to the wobble capacity hypothesis (Agris 2004; Bonitz et al.1980; Heckman et al. 1980; Martin et al. 1990; Tong and Wong 2004): – NNY codons should have G at the anticodon wobble site because G can pair with both C and U; NNR codons should have U at the anticodon wobble site because U can pair with both A and G. – NNN codons which have U at the anticodon wobble site because U appears to be the most versatile in wobble-paring with other nucleotides (Sibler et al., 1986; Inagaki et al., 1995; Yokoyama and Nishimura, 1995). Xuhua Xia Slide 31 Arginine Codon Usage in 4 Species The arginine codons are translated by a single tRNA with a wobbling A Species Accession CGA CGC CGG CGU C. elegans NC_001328 1 0 1 29 M. polymorpha NC_001660 260 165 118 286 P. Canadensis NC_001762 0 1 0 19 S. cerevisiae NC_001224 0 2 1 18 Xuhua Xia Slide 32 Illustration of Different predictions • A lysine (Lys) codon family has 20 AAA and 60 AAG codons. – WVH: a wobble U in the tRNALys anticodon – CAAH would predict a wobble C – If the tRNALys anticodon is found to have a wobble U, then WVH is supported; if a wobble C is found, then CAAH is supported. • If we have 60 AAA codons and 20 AAG codons and if tRNALys anticodon has a wobble U, then both hypotheses are supported. • If the Lys codon has 40 AAA and 40 AAG codons – WVH: a wobble U – CAAH: no prediction • If we have no AAA codon but 80 AAG codon, – WVH: a wobble U – CAAH: a wobble C • Anticodon wobble nucleotides in vertebrate mtDNA are consistent with both hypotheses which have the same prediction for every codon family. Xuhua Xia Slide 33 Fungal Data Species Accession(1) Allomyces macrogynus NC_001715 4 1 13 Ashbya gossypii ATCC 10895 NC_005789 3 0 10 •UGA = Trp Aspergillus niger NC_007445 4 0 12 •AUA = Met Aspergillus tubingensis NC_007597 4 0 12 Candida albicans SC5314 NC_002653 4 1 11 Candida glabrata NC_004691 3 0 12 Kluyveromyces thermotolerans NC_006626 3 0 11 Rhizophydium sp.136 NC_003053 16 0 2 Spizellomyces punctatus1 NC_003052 16 0 4 … … … … … 23 414 Sum Xuhua Xia Code(2) NCAAH NWVH • TT3: •CUN = Thr • TT4: •UGA= Trp • TT16: •UAG = Leu Slide 34 Codon families supporting CAAH AC(4) RSCU(5) Codon Candida metapsilosis CGU 43 CGG 0 0.00 CGC 0 0.00 CGA 3 0.26 CGU 37 CGG 0 0.00 CGC 0 0.00 CGA 3 0.30 CGU 19 CGG 0 0.00 CGC 1 0.20 CGA 0 0.00 AGU 120 AGC 1 UGG 77 UGA 0 UGG 77 UGA 0 UGG 109 UGA 0 Candida orthopsilosis Pichia Canadensis Pichia Canadensis Harpochytrium sp. JEL94 Harpochytrium sp. JEL105 Hyaloraphidium curvatum Xuhua Xia N(1) ECAAH(2) EWVH(3) Species A A A A U U U G ACG ACG ACG ACU 3.74 3.70 3.80 1.98 0.02 C U CCA 2.00 0.00 C U CCA Only CGN (Arg) and AGY (Ser) and UGR (Trp) codon families support CAAH. Codon families supporting CAAH exhibit greater codon usage bias than those not supporting CAAH 2 0 C U CCA 2.00 0.00 Only a subset of data is shown Slide 35 CGN codon family support CAAH. Why? • The anticodon for the CGN codon family is ACG to match the more abundant CGU codon instead of UCG to wobble pair with all four codons. Possible alternative explanations: – UCG can wobble pair with UGA which is a stop codon – Historical inertia: in most bacterial species, the anticodon is ACG which undergoes the A-I (inosine) conversion, with I capable of pairing with A, C, U. Mitochondrial genome is a highly degenerated bacterial genome and consequently still have kept the ACG anticodon. Xuhua Xia Slide 36 UGR codon family supports CAAH. Why? • UGG codon is more abundant than UGA codon, and the anticodon is CCA to match the more abundant UGG instead of UCA to wobble pair with both codons. • Historical inertia: – The standard genetic code has UGA being stop codon and UGG as tryptophan. – This has two consequences: • The anticodon for UGG should naturally be CCA. • UGG is far more abundant than UGA (stop) – When UGA was captured as a Trp codon, the anticodon remains CCA and UGG remains far more abundant than UGA. – So the support of CAAH is not really due to codon-anticodon adaptation. • The mitochondrial genome of K. thermotolerans has 60 UGA codons and only one UGG codon, its tRNATrp anticodon has changed from CCA to UCA Xuhua Xia Slide 37 Met codon usage (TT 3) Species Xuhua Xia AUA AUG Ashbya gossypii ATCC 10895 95 34 Candida glabrata 85 78 Kluyveromyces thermotolerans 30 78 Saccharomyces cerevisiae 244 184 Saccharomyces castelli 128 69 Saccharomyces servazzii 181 93 Yarrowia lipolytica 596 232 The anticodon is CAU matching AUG Slide 38 Selection against AUA codons Met Leu Glu Lys Gln Arg Trp Species AUA UUA GAA AAA A. gossypii 1.473 1.993 1.826 1.852 1.917 2 2 C. glabrata 1.043 1.995 2.000 1.938 1.889 2 2 K. thermotolerans 0.556 1.973 1.910 1.948 1.945 2 1.967 S. cerevisiae 1.140 1.969 1.800 1.883 1.794 1.947 1.908 S. castelli 1.299 1.994 1.891 1.981 1.969 S. servazzii 1.321 1.931 1.702 1.824 1.841 1.959 Y. lipolytica 1.440 1.968 1.536 1.859 1.963 1.922 1.882 Xuhua Xia CAA AGA UGA 2 1.918 2 In species with two tRNAMet, with one having a UAU anticodon, then AUA codon usage is significantly increased (Xia, X. 2007). Slide 39 Why so little support for CAAH? • Altering tRNA anticodons (including the wobble nucleotide) often results in decreased efficiency and specificity of aminoacylation of altered tRNA (Li et al. 1993; Pallanck et al. 1992; Pallanck and Schulman 1991; Schulman 1991). • tRNA anticodons may not be flexible to adapt to codon usage bias and consequently raises difficulties for CAAH. • CAAH is supported only when codon families – Exhibit extreme codon usage bias and – Code for a frequently used amino acid • Further reading: Xia, X. 2008. The cost of wobble translation in fungal mitochondrial genomes: integration of two traditional hypotheses. BMC Evolutionary Biology 8:211. Xuhua Xia Slide 40