Download dene ? meto ksis e

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
KJM 3600
Hvor pålitelige er de kvantekjemiske metodene ?
Noen eksempler fra egen praksis
Einar Uggerud
• Metallklynger
• Hydrogeneringsenergier
• Barrierer for SN2-reaksjoner
Oversikt
1) Bottom-to-top approach to
catalytic activity
2) Bridges the gap between
atomic/molecular scale and
solid state/surface.
Metal clusters
Fen+
10
11
12
13
14
15
2.
3.
1.
Fossan, K. O., Uggerud, E.
Dalton Trans. 2004, 892-897.
Produced by laser evaporation of metal with
consequitive condensation in supersonically
expanding He.
Ions transferred to FT-ICR-MS cell.
Reactivity studies
Fe10NH3+
Fe10+
Reactions between Fen+ and NH3
Absolute rate (cm 3 molecule -1 s-1)x10-10
1.0
2.0
3.0
4.0
5.0
Cluster size
Fe4+ + NH3
k= 2.2.10-10 cm3mol-1s-1
-> Fe4NH + + H2
0
-168
-8
-236
-1
B3-LYP/LANL2DZ (kJmol-1)
-121
-97
148
343
B3LYP
149
33
BP86 CASSCF
(8,8)
345 117
Christian Adlhart, upubliserte data
141
174
H2 + C2H4 → C2H6
MP2
301
Eksp.
2H2 + C2H2 → C2H6 311
Reaksjon
Hydrogeneringsentalpier (kJmol-1) for etyn og eten
(298 K, inklusive ZPVE, basis 6-31G(d))
Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A.
J. Chem. Phys. 1991, 94, 7221.
1) Innledende geometrioptimialisering: HF/6-31G(d med
tilhørende beregning av nullpunktsvibrasjonsenergien
(ZPVE).
2) Ny geometrioptimialisering: MP2(full)/6-31G(d
3) Deretter en rekke enkeltpunktsberegninger MP2, MP4 og
QCISD(T) i tur og orden med et endelig energiestimat
tilsvarende QCISD(T)/6-311+G(3df,2p) level.
En lagmodell, G2:
Edward Davies Hughes (1906–1963)
SN1
SN2
Christopher Kerk Ingold (1893-1970)
E2
E1
An alcohol
Protonated alcohol
(activated)
+
→ (alkene) + (H2O )2H+
Uggerud, E.; Bache-Andreassen, L.
Chem. Eur. J. 1999, 5, 1917.
Laerdahl, J.K. and E. Uggerud,
Org. Biom. Chem. 2003. 1, 2935.
( R = CH3, CH3CH2, (CH3)2CH and (CH3)3C )
(18OH2 labelled water)
or elimination
H2O + ROH2+
H2O + ROH2+ → ROH2+ + H2O
substitution
Gas phase reactions between water and
protonated alcohols
SN2 Critical step
SN2 transition structures
+
CH3OH2 OH2
CH3OH2 OH2
+
-50.2
+
H2O CH3OH2 +H2OCH3 O H2
-50.2
ts
-46.0
0.0
+
CH3OH2 + H2O
-128.3
-46.0
ts
-7.6
ts
H2O CH3 OH2
+
CH3 +
OH2
OH2
-128.3
0.0
+
CH3OH2 + H2O
MP2 model
Steric hindrance
ts 117.8
Exp.
k , rate
-23.0
-7.6
-5.3
-14.4
4.7
3.3
MP2
MP2//
HF
HF
G2
G3
∆E(kJmol-1)
2.2.10-13
CH3-
Barrier height B3LYP
(cm3molecule-1s-1)
Method
Parameter
-18.6
10.2
8.4
1.3
3.6
-12.3
6.7.10-14
-33.4
-0.7
0.9
-3.3
-2.3
-14.5
4.6.10-11
-52.4
-27.8
-25.7
-20.3
-18.6
-35.1
4.0.10-10
CH3CH2- (CH3)2CH- (CH3)3C-
HF
νTS(cm-1)
i.369
i.428
i.499
MP2
frequency,
i.311
i.363
B3LYP
2.039
HF
Imaginary
2.209
1.953
MP2
i.199
2.060
2.083
1.974
B3LYP
i.117
i.296
i.261
2.622
2.235
2.261
CH3CH2- (CH3)2CH-
r3 (Å)
CH3-
Method
Parameter
i.135
i.166
i.156
2.787
2.689
2.787
(CH3)3C-
Et
1 2 3 4
i-Pr
t-Bu
1,00E-14
1,00E-13
1,00E-12
1,00E-11
1,00E-10
1,00E-09
Results at odds with textbook:
CH3 > CH3CH2 > (CH3)2CH > (CH3)3C
Me
substitution
rate
[cm3molecule -1 s -1 ]
Experiment H218O substitution
∆E
-1
15
10
5
0
-5
-10Me
-15
-20
-25
-30
[kJmol
TS
]
1 2 3 4
Et
i-Pr
Substitution, G3 model
H2O + ROH2+ → ROH2+ + H2O
t-Bu
Me
Et
1 2 3 4
i-Pr
substitution
t-Bu
1,00E-14
1,00E-13
1,00E-12
1,00E-11
1,00E-10
1,00E-09
[cm3molecule -1s-1 ]
rate
Related documents