Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
KJM 3600 Hvor pålitelige er de kvantekjemiske metodene ? Noen eksempler fra egen praksis Einar Uggerud • Metallklynger • Hydrogeneringsenergier • Barrierer for SN2-reaksjoner Oversikt 1) Bottom-to-top approach to catalytic activity 2) Bridges the gap between atomic/molecular scale and solid state/surface. Metal clusters Fen+ 10 11 12 13 14 15 2. 3. 1. Fossan, K. O., Uggerud, E. Dalton Trans. 2004, 892-897. Produced by laser evaporation of metal with consequitive condensation in supersonically expanding He. Ions transferred to FT-ICR-MS cell. Reactivity studies Fe10NH3+ Fe10+ Reactions between Fen+ and NH3 Absolute rate (cm 3 molecule -1 s-1)x10-10 1.0 2.0 3.0 4.0 5.0 Cluster size Fe4+ + NH3 k= 2.2.10-10 cm3mol-1s-1 -> Fe4NH + + H2 0 -168 -8 -236 -1 B3-LYP/LANL2DZ (kJmol-1) -121 -97 148 343 B3LYP 149 33 BP86 CASSCF (8,8) 345 117 Christian Adlhart, upubliserte data 141 174 H2 + C2H4 → C2H6 MP2 301 Eksp. 2H2 + C2H2 → C2H6 311 Reaksjon Hydrogeneringsentalpier (kJmol-1) for etyn og eten (298 K, inklusive ZPVE, basis 6-31G(d)) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. 1) Innledende geometrioptimialisering: HF/6-31G(d med tilhørende beregning av nullpunktsvibrasjonsenergien (ZPVE). 2) Ny geometrioptimialisering: MP2(full)/6-31G(d 3) Deretter en rekke enkeltpunktsberegninger MP2, MP4 og QCISD(T) i tur og orden med et endelig energiestimat tilsvarende QCISD(T)/6-311+G(3df,2p) level. En lagmodell, G2: Edward Davies Hughes (1906–1963) SN1 SN2 Christopher Kerk Ingold (1893-1970) E2 E1 An alcohol Protonated alcohol (activated) + → (alkene) + (H2O )2H+ Uggerud, E.; Bache-Andreassen, L. Chem. Eur. J. 1999, 5, 1917. Laerdahl, J.K. and E. Uggerud, Org. Biom. Chem. 2003. 1, 2935. ( R = CH3, CH3CH2, (CH3)2CH and (CH3)3C ) (18OH2 labelled water) or elimination H2O + ROH2+ H2O + ROH2+ → ROH2+ + H2O substitution Gas phase reactions between water and protonated alcohols SN2 Critical step SN2 transition structures + CH3OH2 OH2 CH3OH2 OH2 + -50.2 + H2O CH3OH2 +H2OCH3 O H2 -50.2 ts -46.0 0.0 + CH3OH2 + H2O -128.3 -46.0 ts -7.6 ts H2O CH3 OH2 + CH3 + OH2 OH2 -128.3 0.0 + CH3OH2 + H2O MP2 model Steric hindrance ts 117.8 Exp. k , rate -23.0 -7.6 -5.3 -14.4 4.7 3.3 MP2 MP2// HF HF G2 G3 ∆E(kJmol-1) 2.2.10-13 CH3- Barrier height B3LYP (cm3molecule-1s-1) Method Parameter -18.6 10.2 8.4 1.3 3.6 -12.3 6.7.10-14 -33.4 -0.7 0.9 -3.3 -2.3 -14.5 4.6.10-11 -52.4 -27.8 -25.7 -20.3 -18.6 -35.1 4.0.10-10 CH3CH2- (CH3)2CH- (CH3)3C- HF νTS(cm-1) i.369 i.428 i.499 MP2 frequency, i.311 i.363 B3LYP 2.039 HF Imaginary 2.209 1.953 MP2 i.199 2.060 2.083 1.974 B3LYP i.117 i.296 i.261 2.622 2.235 2.261 CH3CH2- (CH3)2CH- r3 (Å) CH3- Method Parameter i.135 i.166 i.156 2.787 2.689 2.787 (CH3)3C- Et 1 2 3 4 i-Pr t-Bu 1,00E-14 1,00E-13 1,00E-12 1,00E-11 1,00E-10 1,00E-09 Results at odds with textbook: CH3 > CH3CH2 > (CH3)2CH > (CH3)3C Me substitution rate [cm3molecule -1 s -1 ] Experiment H218O substitution ∆E -1 15 10 5 0 -5 -10Me -15 -20 -25 -30 [kJmol TS ] 1 2 3 4 Et i-Pr Substitution, G3 model H2O + ROH2+ → ROH2+ + H2O t-Bu Me Et 1 2 3 4 i-Pr substitution t-Bu 1,00E-14 1,00E-13 1,00E-12 1,00E-11 1,00E-10 1,00E-09 [cm3molecule -1s-1 ] rate