Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Electronic Circuits 1 Two Port Characterizations Contents • Input and output resistances • Two port networks • Models Prof. C.K. Tse: 2-port networks 1 Impedances and loading effects Voltage amplifiers Rs vs + – Rout + vin Rin + – Avvin – smaller the better (the best is 0) + vo – RLOAD larger the better (the best is ∞) Prof. C.K. Tse: 2-port networks 2 Impedances and loading effects Current amplifiers larger the better (the best is ∞) iin is Rs Rin Aiiin Rout iout RLOAD smaller the better (the best is 0) Prof. C.K. Tse: 2-port networks 3 Impedances and loading effects Transconductance amplifiers larger the better (the best is ∞) Rs vs + – + vin – Gmvin Rin Rout iout RLOAD larger the better (the best is ∞) Prof. C.K. Tse: 2-port networks 4 Impedances and loading effects Transresistance amplifiers iin is Rs Rout Rin + – Rmiin smaller the better (the best is 0) + vo – RLOAD smaller the better (the best is 0) Prof. C.K. Tse: 2-port networks 5 Finding impedances Input impedance Inject a current to the input, find the voltage. The ratio of the voltage to current gives the input resistance. WITH Output open-circuit if it is supposed to be a voltage output (e.g., voltage amplifiers and transresistance amplifiers) ix + vx – short-circuit if it is supposed to be a current output (current amplifiers and transconductance amplifiers) Rin Prof. C.K. Tse: 2-port networks 6 Finding impedances Output impedance Inject a current at output, find the voltage. The ratio of the voltage to current gives the output resistance. WITH input short-circuit if it is supposed to be a voltage input (e.g., voltage amplifiers and transconductance amplifiers) open-circuit if it is supposed to be a current input (current amplifiers and transresistance amplifiers) ix + vx – Rout Prof. C.K. Tse: 2-port networks 7 Example: CE amplifier with ED Input resistance is vin iB rin RB1 || RB2 B C rπ ~ ro gmvBE E + vo – E RE rin = = v in v BE + v E = iB iB v BE v E + iB iB = rπ + vE iB = rπ + vE i E /(1 + β ) = r π + (1 + β )RE Prof. C.K. Tse: 2-port networks 8 Example: EF amplifier B Output resistance is C rπ ~ rout = ro im gmvBE E RE vE = iE + E rout v m −v BE −v BE = = im im i E − i B − gmv BE + – vm = vE + gmv E rπ 1 1 1 + + gm RE r π 1 1 ≈ g 1 1 + m + gm + gm RE RE β = RE || Prof. C.K. Tse: 2-port networks = 1 gm 9 Quick rule 1 r π + (1 + β )RE RE Prof. C.K. Tse: 2-port networks 10 Example r π + (1 + β )[RE 1 || (r π + (1 + β )RE 2 )] RE1 RE2 Prof. C.K. Tse: 2-port networks 11 Quick rule 2 RB RB RB 1 + gm 1 + β RE Prof. C.K. Tse: 2-port networks 1 RB + gm 1 + β RE 12 Example RL RB RE 1 RL + RB + 1+ β gm Prof. C.K. Tse: 2-port networks RE 13 General two port characterizations 2 1 i1 i2 + v2 – + v1 – Prof. C.K. Tse: 2-port networks 14 Types of characterizations Immittance parameters - z-parameters - y-parameters Hybrid parameters - h-parameters - g-parameters Prof. C.K. Tse: 2-port networks 15 z-parameters i1 + v1 – 1 2 i2 + v2 – v z z i 1 = 11 12 1 v 2 z 21 z 22 i 2 z11 = v1 i1 i v1 i2 i z12 = z 21 = 2 =0 1 =0 (open-circuit port 2) (open-circuit port 1) v2 i1 i1 =0 (open-circuit port 2) v2 i2 i 2 =0 (open-circuit port 2) z 22 = Prof. C.K. Tse: 2-port networks 16 y-parameters i1 + v1 – 1 2 i y y 12 v 1 1 11 = i 2 y 21 y 22 v 2 i2 + v2 – y 11 = y 12 = y 21 = y 22 = Prof. C.K. Tse: 2-port networks i1 v1 v 2 =0 (short-circuit port 2) i1 v2 v 1 =0 (short-circuit port 1) i2 v1 v 1 =0 (short-circuit port 2) i2 v2 v 2 =0 (short-circuit port 2) 17 h-parameters i1 1 2 v h h12 i1 1 11 = i 2 h21 h22 v 2 i2 + v1 – + v2 – h11 = h12 = BJT model in some books: h11 = rπ input resistance h21 = hfe = β Early resistance h22 = 1/ro h21 = h22 = Prof. C.K. Tse: 2-port networks v1 i1 v v1 v2 i2 i1 v i2 v2 2 =0 (short-circuit port 2) i1 =0 (open-circuit port 1) 2 =0 (short-circuit port 2) i1 =0 (open-circuit port 1) 18 g-parameters i1 + v1 – 1 2 i g g12 v 1 1 11 = v 2 g21 g22 i 2 i2 + v2 – g11 = g12 = i1 v1 i 2 =0 i1 i2 v 1 =0 g21 = g22 = v2 v1 (open-circuit port 2) (short-circuit port 1) i 2 =0 (open-circuit port 2) v2 i2 v 1 =0 Prof. C.K. Tse: 2-port networks (short-circuit port 1) 19 Example i1 + v1 – R1 R2 i2 + v2 – h11 = v1 i1 v h12 = h21 = h22 = Prof. C.K. Tse: 2-port networks v1 v2 i2 i1 v i2 v2 = R1 || R2 = 2 =0 = R2 R1 + R2 = −R2 R1 + R2 = 1 R1 + R2 i 1 =0 2 =0 i 1 =0 R1R2 R1 + R2 20 Connecting two-ports — series-series i1 + v1 – i2 Z i3 + v3 – + v2 – i4 Z’ + v4 – Total [Z]T = [Z]+[Z’] Prof. C.K. Tse: 2-port networks 21 Connecting two-ports — shunt-shunt i1 + v1 – i2 Y i3 + v3 – + v2 – i4 Y’ + v4 – Total [Y]T = [Y] + [Y’] Prof. C.K. Tse: 2-port networks 22 Connecting two-ports — shunt-series i1 + v1 – i2 G i3 + v3 – + v2 – i4 G’ + v4 – Total [G]T = [G] + [G’] Prof. C.K. Tse: 2-port networks 23 Connecting two-ports — series-shunt i1 + v1 – i2 H i3 + v3 – + v2 – i4 H’ + v4 – Total [H]T = [H] + [H’] Prof. C.K. Tse: 2-port networks 24 Circuit models We can develop circuit model for each type of two-port descriptions. Example: h-parameter v h v = h i + h v h12 i1 1 11 11 1 12 2 = ⇒ 1 i 2 = h21i1 + h22v 2 i 2 h21 h22 v 2 i1 + v1 – i2 h11 1/h22 + – h12v2 h21i1 Prof. C.K. Tse: 2-port networks + v2 – 25 Example: BJT model We can model the BJT as a h-parameter model: h11 = rπ input resistance h12 ≈ 0 h21 = hfe = β h22 = 1/ro Early resistance i1 + v1 – i2 rπ βi1 = gmv1 Prof. C.K. Tse: 2-port networks ro + v2 – 26