Download PolyPhase-Circuits (Irwin)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
POLYPHASE CIRCUITS
LEARNING GOALS
Three Phase Circuits
Advantages of polyphase circuits
Three Phase Connections
Basic configurations for three phase circuits
Source/Load Connections
Delta-Y connections
Power Relationships
Study power delivered by three phase circuits
Power Factor Correction
Improving power factor for three phase circuits
THREE PHASE CIRCUITS
ia
ib
Vm  120 2
ic
Instantaneous Phase Voltages
van (t )  Vm cos( t )(V )
Balanced Phase Currents
ia (t )  I m cos( t   )
vbn (t )  Vm cos( t  120)(V )
vc (t )  Vm cos( t  240)(V )
ib (t )  I m cos( t    120) Instantaneous power
p(t )  van (t )ia (t )  vbn (t )ib (t )  vcn (t )ic (t )
ic (t )  I m cos( t    240)
Theorem
For a balanced three phase circuit the instantaneous power is constant
p( t )  3
Vm I m
cos (W )
2
Proof of Theorem
For a balanced three phase circuit the instantaneous power is constant
V I
p(t )  3 m m cos (W )
2
Instantaneous power
p(t )  van (t )ia (t )  vbn (t )ib (t )  vcn (t )ic (t )
cos t cos( t   )

p(t )  Vm I m  cos( t  120) cos( t  120   ) 


 cos( t  240) cos( t  240   )
1
cos cos   cos(   )  cos(   )
2
3 cos  cos(2 t   )
p(t )  Vm I m  cos(2 t  240   ) 


 cos(2 t  480   ) 
   t 
cos(  240)  cos(  120)
cos(  480)  cos(  120)
cos(120)  0.5
Lemma
cos  cos(  120)  cos(  120)  0
Proof
cos  cos
cos(  120)  cos cos(120)  sin  sin(120)
cos(  120)  cos cos(120)  sin  sin(120)
cos  cos(  120)  cos(  120)  0
THREE-PHASE CONNECTIONS
Positive sequence
a-b-c
Y-connected
loads
Delta connected loads
SOURCE/LOAD CONNECTIONS
BALANCED Y-Y CONNECTION
Line voltages
Van | V p | 0
Vab
Vca
Vbc
Vbn | V p |   120
Vcn | V p | 120
Positive sequence
phase voltages
Vab  Van  Vbn
| V p | 0 | V p |   120
| V p | 1  (cos120  j sin 120) 
1
3

| V | p  | V p |   j
2 
2
 3 | V p | 30
Vbc  3 | V p |   90
Ia 
Van
V
V
; I b  bn ; I c  cn
ZY
ZY
ZY
Ia | I L |  ; Ib | I L |   120; Ic | I L |   120
Vca  3 | V p |   210
VL  3 | V p |  Line Voltage
Ia  Ib  Ic  I n  0 For this balanced circuit it is enough to analyze one phase
LEARNING EXAMPLE
For an abc sequence, balanced Y - Y three phase circuit
Vab  208  30
Determine the phase voltages
The phasor diagram could be rotated by any angle
Positive sequence
a-b-c
Balanced Y - Y
Van  120  60
Vbn  120  180
Van  12060
Van | V p | 0
Vbn | V p |   120
Vcn | V p | 120
Positive sequence
phase voltages
Vab  3 | V p | 30
Van lags Vab by 30
Vab  208  30
Van 
| Vab |
(30  30)
3
Relationship between
phase and line voltages
LEARNING EXAMPLE
For an abc sequence, balanced Y - Y three phase circuit
source | V phase | 120(V )rms , Zline  1  j1, Z phase  20  j10 Because circuit is balanced
Determine line currents and load voltages
data on any one phase are
sufficient
I bB  5.06  120  27.65( A)rms
I cC  5.06120  27.65( A)rms
VAN  IaA  (20  j10)  IaA  22.3626.57
1200
VAN  113.15  1.08(V )rms
Chosen
as reference
Van  1200
Vbn  120  120
Van  120120
Abc sequence
Van
1200

21  j11 23.7127.65
 5.06  27.65( A)rms
I aA 
VBN  113.15  121.08(V )rms
VCN  113.15118.92(V )rms
LEARNING EXTENSION
For an abc sequence, balanced Y - Y three phase circuit
Van  12090 (V )rms . Find the line voltages
Vab leads Van by 30
Vab  3 | V p | 30
Vab  3 120120 (V )rms
Van lags Vab by 30
Vbc  3  1200 (V )rms
Vca  3  120240 (V )rms
Relationship between
phase and line voltages
Vab  2080 (V )rms . Find the phase voltages
Van lags Vab by 30
Van 
208
  30 (V )rms
3
208
  150 (V )rms
3
208
Vcn 
90 (V )rms
3
Vbn 
LEARNING EXTENSION
For an abc sequence, balanced Y - Y three phase circuit
load, | V phase | 104.0226.6(V )rms , Zline  1  j1, Z phase  8  j3
Determine source phase voltages
Currents are not required. Use inverse
voltage divider
(8  j 3)  (1  j1)
VAN
8  j3
9  j 4 8  j 3 84  j 5


 1.153.41
8  j3 8  j3
73
Van 
8
 104.0226.6(V )rms
j 3
Van  12030
Vbn  120  90
Vcn  120150
Positive sequence
a-b-c
DELTA CONNECTED SOURCES
Convert to an equivalent Y connection
Vab  VL0
Vab  3 | V p | 30
VL
 
V

  30
  an
3
Vbc  VL  120 

Vca  VL120  V  VL   150
bn
3

VL

V

90
 cn
3

Van lags Vab by 30 Example
Vab  20860 

Vbc  208  60 
Relationship between
Vca  208180 
phase and line voltages
Van  12030

Vbn  120  90
V  120150
 cn
LEARNING EXAMPLE
Determine line currents and line voltages at the loads
Source is Delta connected.
Convert to equivalent Y
Vab  VL0


Vbc  VL  120 
Vca  VL120 
VL

V

  30
 an
3

VL

V

  150
 bn
3

VL

V

90
 cn
3

Analyze one phase
(208 / 3)  30
 9.38  49.14( A)rms
12.1  j 4.2
 (12  j 4)  9.38  49.19  118.65  30.71(V )rms
I aA 
VAN
Vab  3 | V p | 30 VAB  3 118.650.71
Determine the other phases using the balance
I bB  9.38  169.14( A)rms VBC  3  118.65  119.29
I cC  9.38  71.86( A)rms VCA  3  118.65120.71
LEARNING EXTENSION
Compute the magnitude of the line voltage at the load
Source is Delta connected.
Convert to equivalent Y
Vab  VL0


Vbc  VL  120 
Vca  VL120 
VL

V

  30
 an
3

VL

V

  150
 bn
3

VL

V

90
 cn
3

Analyze one phase
j 0.1
10
VAN 
10  j 4
120  30
10.1  j 4.1
Only interested in magnitudes!
10.77
 118.57(V )rms
10.90
Vab  3 | V p | 30
| VAB | 205.4(V )rms
| VAN | 120
DELTA-CONNECTED LOAD
Load phase currents
V
I AB  AB | I  |  
Z
I BC 
   30   Z
VBC
| I  |    120
Z
VCA
| I  |    120
Z
Line currents
I CA 
Z | Z L |  Z
I aA  I AB  I CA
I bB  I BC  I AB
Method 1: Solve directly
Van | V p | 0
Vbn | V p |   120
Vcn | V p | 120
Positive sequence
phase voltages
Vab  3 | V p | 30
Vbc  3 | V p |   90
Vca  3 | V p |   210
| I line | 3 | I  |
 line     30
Line-phase current
relationship
I cC  I CA  I BC
Method 2: We can also convert the delta
connected load into a Y connected one.
The same formulas derived for resistive
circuits are applicable to impedances
Z
3

|V | / 3
Van
| I aA | AB
I aA 
| I aA |  L  
| Z | / 3
ZY

 L   Z
Balanced case ZY 
REVIEW OF
Rab  R2 || ( R1  R3 )
Y
Transformations
 Y
Rab  Ra  Rb
Y 
Ra R1
Rb R1
Rb R2
Rb R1
R1 R2


R



R

3
2
Ra
Rc R1
Rc
R2 ( R1  R3 ) Ra  R1  R2  R3 Rb R3
Ra  Rb 
REPLACE IN THE THIRD AND SOLVE FOR R1
R1  R2  R3
R2 R3
Rb 
R1  R2  R3
Ra Rb  Rb Rc  Rc Ra
R3 ( R1  R2 )
R

1
Rb  Rc 
Rb
R
R
3 1
R1  R2  R3 Rc 
R1  R2  R3
R R  Rb Rc  Rc Ra
R2  a b
Rc
 Y
R1 ( R2  R3 )
Rc  Ra 
R R  Rb Rc  Rc Ra
R1  R2  R3
R3  a b
Ra
SUBTRACT THE FIRST TWO THEN ADD
TO THE THIRD TO GET Ra
Y 
R  R1  R2  R3  RY 
R
3
| V | 3 | V phase |
    phase  30
Line - phase voltage
relationsh ip
| I line | 3 | I  |
 line     30
Line-phase current
relationship

LEARNING EXTENSION
I aA  1240.
Find the phase currents
I AB  6.9370
I BC  6.93  50
I CA  6.93190
LEARNING EXAMPLE
Delta-connected load consists of 10-Ohm resistance in series
with 20-mH inductance. Source is Y-connected, abc sequence,
120-V rms, 60Hz. Determine all line and phase currents
Van  12030(V )rms
Zinductance  2  60  0.020  7.54
Z  10  j 7.54  12.5237.02  ZY  4.1737.02
VAB 120 360

 16.6022.98( A)rms
Z
10  j 7.54
 16.60  97.02( A)rms
I AB 
I BC
| V | 3 | V phase |
I CA  16.60142.98( A)rms
    phase  30
IaA  28.75  7.02( A)rms
Line - phase voltage
relationsh ip
I bB  28.75  127.02( A)rms
| I line | 3 | I  |
 line     30
Line-phase current
relationship
I cC  28.75112.98( A)rms
Alternatively, determine first the line currents
and then the delta currents
POWER RELATIONSHIPS
| V | 3 | V phase |
- Impedance angle
    phase  30
Line - phase voltage
relationsh ip
Vline
STotal  3 V phase  I *phase
*
STotal  3Vline I line
| I line | 3 | I  |
 line     30
Line-phase current
relationship

Stotal  3Vline  I *
*
STotal  3Vline I line
f

Power factor angle
I line
Ptotal  3 |Vline || I line | cos f
Qtotal  3 |Vline || I line | sin  f
LEARNING EXAMPLE
| Vline | 208(V )rms
Ptotal  1200W
power factor angle  20 lagging

Vline

Determine the magnitude of the line
currents and the value of load impedance
per phase in the delta
- Impedance angle
Ptotal  3 |Vline || I line | cos f
Qtotal  3 |Vline || I line | sin  f
Z  101.4620
Vline
Ptotal | Vline || I line |

cos f | I line | 3.54( A)rms
3
3
| I line | 3 | I  |
 line     30
f

Power factor angle
| Vline |

|
Z
|

 101.46

| I  | 2.05( A)rms
|
I
|
Line-phase current

relationship
I line
LEARNING EXAMPLE
For an abc sequence, balanced Y - Y three phase circuit
source | V phase | 120(V )rms , Zline  1  j1, Z phase  20  j10
Determine real and reactive power per phase at the load and total real, reactive and
complex power at the source
VAN  IaA  (20  j10)  IaA  22.3626.57
VAN  113.15  1.08(V )rms
*
S phase  VAN I aA
 113.15  1.08  5.0627.65
S phase  572.5426.57  512  j 256.09(VA)rms
Pper phase
1200
Chosen
as reference
*
Ssource phase  Van  I aA
 1200  5.0627.65
Van  1200
Vbn  120  120 Because circuit is balanced
Van  120120
data on any one phase are
sufficient
Abc sequence
Van
1200

21  j11 23.7127.65
 5.06  27.65( A)rms
I aA 
Qper phase
Ssource phase  607.227.65
 537.86  j 281.78VA
Ptotal source  3  537.86(W )
Qtotal source  3  281.78 (VA)
Stotal source  Ptotal source  Qtotal source
 1613.6  j845.2(VA)
| Stotal source | 1821.6(VA)
LEARNING EXAMPLE
Determine the line currents and the combined power factor
Circuit is balanced
Load 1 : 24kW at pf  0.6 lagging
Load 2 : 10kW at pf  1

Vline  208(V )rms
Load 3 : 12kVA at pf  0.8 leading

inductive
S  P  jQ
P | S | cos f
P1  24kW

 | S1 | 40kVA
pf  0.6 lagging 
| Q1 | | S1 |2  | P1 |2  32kVA
Q | S | sin  f
pf  cos f
Stotal  S1  S2  S3
f
lagging  inductive  S1  24  j32 kVA
capacitive
Load 2
STOTAL  S1  S2  S3  43.6  j 24.8kVA  50.16029.63kVA
P2  10kW 
  S2  10  j 0 kVA Ptotal  3 |Vline || I line | cos f
| Stotal | 3 | Vline |  | I line |
pf  1


Q

3
|
V
||
I
|
sin

total
line
line
f
Load 3
 f  29.63
| S3 | 12kVA   P3  9.6kW
 
pf  0.8
 | Q3 | 7.2kVA
leading pf  capacitive S3  9.6  j 7.2kVA
pf  0.869 lagging
| I line | 139.23( A)rms
Continued ...
LEARNING EXAMPLE
continued ….
If the line impedances are Z line  0.05  j 0.02
determine line voltages and power factor at the source
inductive
f
capacitive
| I line | 139.23( A)rms
*
Sline  3  ( Z line I line ) I line
 3  Z line | I line |
2
Sline  2908  j1163(VA)
Sload total  43.6  j 24.8kVA  50.16029.63kVA
Ssource total  46.508  j 25.963  53.26429.17kVA
| Stotal | 3 | Vline |  | I line |

 f  29.17
Vline 
53,264
 220.87(V )rms
3  139.13
pf  cos f  cos(29.17)  0.873 lagging
A Y -Y balanced three-phase circuit has a line voltage of
208-Vrms. The total real power absorbed by the load is 12kW
at pf=0.8 lagging. Determine the per-phase impedance
of the load
LEARNING EXTENSION
| V | 3 | V phase |
Impedance angle
    phase  30
Line - phase voltage
relationsh ip
Vline
STotal  3 V phase  I *phase
S  P  jQ
P | S | cos f
208
| V phase |
 120(V )rms
3
Stotal

I line
Q | S | sin  f
pf  cos f
*
 V phase 
| V phase |2
  3
 3V phase  
*
Z

Z
phase
phase


f
Power factor angle
| Z phase|
3 | V phase |2
| Stotal |
 2.88
pf  0.8  cos f   f  36.87
| Stotal |
Ptotal
 15kVA
pf
Z pahse  2.8836.87
LEARNING EXTENSION
Determine real, reactive and complex power at both load
and source
Source is Delta connected.
Convert to equivalent Y
Analyze one phase
j 0.1
10
*
Sload  3  V AN I aA
*
S source  3  Van I aA
 3
| Van |2
*
Z total
phase
10  j 4
120  30
10.1  j 4.1
10.77
| 120
 118.57(V )rms
10.90
VAN 
| VAN
| V AN |2 3 | 118.57 |2 3 | 118.57 |2 (10  j 4)
 3 *


10  j 4
Z phase
102  42
3 | 120 |2 3 | 120 |2 (10.1  j 4.1)


10.1  j 4.1
(10.1) 2  (4.1) 2
Sload  3  (1,212.0  j 484.8)
S source  3  (1224.1  j 496)
LEARNING EXTENSION
A 480-V rms line feeds two balanced 3-phase loads.
The loads are rated
Load 1: 5kVA at 0.8 pf lagging
Load 2: 10kVA at 0.9 pf lagging.
Determine the magnitude of the line current from the 408-V rms source
| S1 | 5kVA 
S  P  jQ
P | S | cos f
P
 P1  4kW
0.8
Q1  | S1 |2  P12  3.0kVA
Q | S | sin  f
pf lagging  S1  4  j3kVA
| S2 | 10kVA 
Q2  | S2 |
2
P
 P  9kW
0.9
 P22
 4.36kVA
S2  9  j 4.36kVA
Stotal  13  j 7.36kVA
| I lineq |
pf  cos f
Stotal  S1  S2
Ptotal  3 |Vline || I line | cos f
Qtotal  3 |Vline || I line | sin  f
| S total | 3 | Vline || I line |
| Stotal |
14,939

 21.14( A)rms
3 | Vline | 706.68
POWER FACTOR CORRECTION
Similar to single phase case.
Use capacitors to increase the
power factor
Balanced
load
Low pf
lagging
Keep clear about total/phase
power, line/phase voltages
Sold 
  Qold
pf old 
Q  Qnew  Qold
Reactive Power to be added
Pold 
  Qnew To use capacitors this value
pf new 
should be negative
S  P  jQ
pf
pf  cos f  sin  f  1  pf 2 tan 
f
2
The voltage depends on how P | S | cos f
1

pf
Q  P tan f
Q

|
S
|
sin

the capacitors are connected
f
lagging  Q  0
pf  cos f
Qper capacitor   CV 2
LEARNING EXAMPLE
f  60 Hz, | Vline | 34.5kV rms . Required : pf  0.94 leading
Pold  18.72 MW
S  P  jQ
P | S | cos f
Q | S | sin  f
pf  cos f

  Qnew  6.8 MVA
pf new  0.94 leading 
Q  6.8  15.02  21.82 MVA
Qper capacitor  7.273MVA
Q  P tan f
tan f 
pf
1  pf
lagging  Qold  0
2
pf  cos f  sin  f  1  pf 2  0.626
| Qold | 15.02 MVA
Pold  18.72 MW
Y  connection  Vcapacitor 
34.5
kV rms
3
 34.5 103 
6

 7.273 10  2  60  C  
3 

C  48.6  F
2
LEARNING EXAMPLE
f  60 Hz, | Vline | 34.5kV rms . Required : pf  0.90 lagging
Pold  18.72 MW
S  P  jQ
P | S | cos f
Q | S | sin  f
pf  cos f

  Qnew  9.067 MVA
pf new  0.90 lagging 
Q  9.067  15.02  5.953MVA
Qper capacitor  1.984 MVA
Q  P tan f
tan f 
pf
1  pf
lagging  Qold  0
2
pf  cos f  sin  f  1  pf 2  0.626
| Qold | 15.02 MVA
Pold  18.72 MW
Y  connection  Vcapacitor 
34.5
kV rms
3
 34.5 103 
6

 1.984 10  2  60  C  
3 

C  13.26  F
2
LEARNING EXAMPLE
MEASURING POWER FLOW Which circuit is the source and
what is the average power supplied?
 120kV rms
 125kV rms
Phase differences
determine direction
of power flow!
Determine the current
flowing. Convert line
voltages to phase voltages
*
SY  3VAN  I aA
S X  3Van ( I aA )*
Equivalent 1-phase circuit
V  VAN
I aA  an
1 j2
12000
12000
  30 
  25
3
3

1 j2
IaA  270.30  180.93( A) rms
Ploss  ( PX  PY )
SY  3 12  0.2703(25  180.93) MVA
S X   3 12  0.2703(30  180.93) MVA
PY  5.13MW
S  P  jQ
PX  4.91MW
P | S | cos
System Y is the source
f
CAPACITOR SPECIFICATIONS
Capacitors for power factor correction are normally specified in VARs
| Qper capacitor |  CV 2
The voltage and frequency must be given in order to know the capacitanc e
Assume 60 Hz unless other value is given.
LEARNING EXAMPLE
For pf  0.94 leading one needs
C  48.6  F
Choices available
Capacity
1
2
3
Rated Voltage (kV)
10
50
20
Rated Q (Mvar)
4
25
7.5
4  106
C1 
 106.1 F
3 2
2  60  (10  10 )
25  106
C2 
 26.53 F
3 2
2  60  (50  10 )
Vline  34.5kV  V phase  19.9kV
Capacitor 1 is not rated at high enough
voltage!
7.5  106
C3 
 49.7  F
3 2
2  60  (20  10 )
Capacitor 3 is the best alternative
LEARNING BY DESIGN
Proposed new store
#4ACSR wire rated at 170 A rms
1. Is the wire suitable?
2. What capacitance
would be required to
have a composite
pf =0.92 lagging
Capacitors are to be
Y - connected
S1  70036.9
S2  100060kVA
S3  80025.8kVA
 560  j 420 kVA  500  j866 kVA
 720  j 349 kVA
Stotal  1780  j1635 kVA  241742.57 kVA
| Stotal |
2.417  106
| I line |

 101.1A rms
3
3  Vline
3  13.8  10
Wire is OK
Pold 
  Qnew  P tan f ( new )  758.28kVA
pf new 
Q  Qnew  Qold  876.72kVA

Q | S | sin  f
pf  cos f
STotal  3  V phase  I *phase
*
 3  Vline  I line


| Qper capacitor |  CV 2
876.72 103 / 3
 12.2 F
C
2
13.8kV
2  60  13.8 103 / 3
V | V phase |
3

Stotal  S1  S2  S3
S  P  jQ
P | S | cos f
Polyphase
Related documents