Download chapter 10 _Analog intergrated circuits

Document related concepts
no text concepts found
Transcript
Chapter 10 Analog Integrated
Circuits and its application
Introduction
The 741 Op-Amp Circuit
The ideal Op Amp
The inverting configuration
The noninverting configuration
Integrator and differentiator
Other operation application
Microelectronic Circuits
SJTU Yang Hua
Introduction
信号的提取:传感器、接收器或信号发生器,通常信号比较微弱,且易受
干扰,甚至与噪声的幅度相当。
信号预处理:信号的分离与放大(隔离、滤波与阻抗变换)
信号的加工:信号的运算、转换和比较等。一般再经功放才能驱动负载,
或者经A/D转换到PC机
信号的执行:一般为CPU(MCU,DSP,PC)
Microelectronic Circuits
SJTU Yang Hua
Content
Part 1. The 741 Op-Amp Circuit and analysis.
Part 2. Analog integrated circuits’ application
_ the application of operational amplifier
_ the application of comparer circuits
Microelectronic Circuits
SJTU Yang Hua
Part I:




Analog ICs include operational amplifiers, analog
multipliers, A/D converters, D/A converters, PLL,
etc.
A complete op amp is realized by combining
analog circuit building blocks.
The bipolar op-amp has the general purpose
variety and is designed to fit a wide range of
specifications.
The terminal characteristics is nearly ideal.
Microelectronic Circuits
SJTU Yang Hua
The 741 Op-Amp Circuit
Microelectronic Circuits
SJTU Yang Hua
Structure




“化整为零”:划分偏置电路、输入级、中间级和
输出级
“分析功能”:分别分析各部分的结构形式及特
点
“统观整体” :研究各部分电路之间的联系
“定量估算”:必要时做定量分析
Microelectronic Circuits
SJTU Yang Hua
General Description



24 transistors, few resistors and only one
capacitor
Two power supplies
Short-circuit protection
Microelectronic Circuits
SJTU Yang Hua
Microelectronic Circuits
SJTU Yang Hua
Microelectronic Circuits
SJTU Yang Hua
The Input Stage




The input stage consists of transistors Q1
through Q7.
Q1-Q4 is the differential version of CC and CB
configuration.
High input resistance.
Current source (Q5-Q7) is the active load of input
stage. It not only provides a high-resistance load
but also converts the signal from differential to
single-ended form with no loss in gain or
common-mode rejection.
Microelectronic Circuits
SJTU Yang Hua
The Intermediate Stage




The intermediate stage is composed of Q16, Q17
and Q13B.
Common-collector configuration for Q16 gives this
stage a high input resistance as well as reduces
the load effect on the input stage.
Common-emitter configuration for Q17 provides
high voltage gain because of the active load Q13B.
Capacitor Cc introduces the miller compensation
to insure that the op amp has a very high unitgain frequency.
Microelectronic Circuits
SJTU Yang Hua
Microelectronic Circuits
SJTU Yang Hua
The Output Stage




The output stage is the efficient circuit called class AB
output stage.
Voltage source composed of Q18 and Q19 supplies the
DC voltage for Q14 and Q20 in order to reduce the
cross-over distortion.
Q23 is the CC configuration to reduce the load effect on
intermediate stage.
Short-circuit protection circuitry
 Forward protection is implemented by R6 and Q15.
 Reverse protection is implemented by R7, Q21,
current source(Q24, Q22) and intermediate stage.
Microelectronic Circuits
SJTU Yang Hua
The Output Stage
(a) The emitter follower is a class A output stage. (b) Class B output stage.
Microelectronic Circuits
SJTU Yang Hua
The Output Stage
Wave of a class B output stage fed with
an input sinusoid.
Positive and negative cycles are unable
to connect perfectly due to the turn-on
voltage of the transistors.
This wave form has the nonlinear
distortion called crossover distortion.
To reduce the crossover distortion can
be implemented by supplying the constant
DC voltage at the base terminals.
Microelectronic Circuits
SJTU Yang Hua
The Output Stage
QN and QP provides the
voltage drop which equals to the
summer of turn-on voltages of
QN and QP.
This circuit is call Class AB
output stage.
Microelectronic Circuits
SJTU Yang Hua
Microelectronic Circuits
SJTU Yang Hua
The Biasing Circuits




Reference current is generated by Q12, Q11 and
R5.
Wilder current provides biasing current in the
order of μA.
Double-collector transistor is similar to the twooutput current mirror. Q13B provides biasing
current for intermediate stage, Q13A for output
stage.
Q5, Q6 and Q7 is composed of the current source
to be an active load for input stage.
Microelectronic Circuits
SJTU Yang Hua
The Ideal Op Amplifier
symbol for the op amp
Microelectronic Circuits
SJTU Yang Hua
The Ideal Op Amplifier
uo
o
uP  uN
The op amp shown connected to dc power supplies.
Microelectronic Circuits
SJTU Yang Hua
Characteristics of the Ideal Op
Amplifier






Differential input resistance is infinite.
Differential voltage gain is infinite.
CMRR is infinite.
Bandwidth is infinite.
Output resistance is zero.
Offset voltage and current is zero.
a)
b)
No difference voltage between
inverting and noninverting terminals.
No input currents.
Microelectronic Circuits
SJTU Yang Hua
Ideal Op amplifier works at linear region
uo = Aod ( uN - uP )
u
1. Differential input voltage is zero N
u
P
uN = uP
Virtual short circuit
feedback
iN
+A
od
iP
-
2. Input current is zero
iN = iP = 0
Virtual disconnect circuit
Working at linear region →
circuit with negative feedback
Microelectronic Circuits
SJTU Yang Hua
u
o
Ideal Op amplifier works at nonlinear region
uo ≠ Aod ( u+ - u- )
1. Vo have only two value
uo
uo = + UOPP when u+> u-
uo = - UOPP when u+ < u-
o
uP  uN
Virtual short circuit doesn’t exsist
2. i+ = i- =0
Virtual disconnect-circuit
Microelectronic Circuits
SJTU Yang Hua
Equivalent Circuit of the Ideal Op
Amp
Microelectronic Circuits
SJTU Yang Hua
The Inverting Configuration
Virtual short
circuit.
vo
v2  v1   0
A
Virtual
disconnect-circuit
i  i  0
Virtual ground: that is, having zero voltage but not physically
connected to ground
Microelectronic Circuits
SJTU Yang Hua
The Inverting Configuration
vo
closed - loop gain : G 
vI
The inverting closed-loop configuration.
Microelectronic Circuits
SJTU Yang Hua
The Inverting Configuration
Microelectronic Circuits
SJTU Yang Hua
Effect of finite open-loop gain
vo
 R2 / R1
G 
vI 1  (1  R2 / R1 ) / A
Microelectronic Circuits
SJTU Yang Hua
The Inverting Configuration




Shunt-shunt negative feedback
Closed-loop gain depends entirely on passive
components and is independent of the op
amplifier.
Engineer can make the closed-loop gain as
accurate as he wants as long as the passive
components are accurate.
Exercises: example 2.2
Microelectronic Circuits
SJTU Yang Hua
Example2.2
Microelectronic Circuits
SJTU Yang Hua
Homework:

May 27th, 2009
2.8; 2.22
Microelectronic Circuits
SJTU Yang Hua
The Non-inverting Configuration
The noninverting configuration.
Series-shunt negative feedback.
Microelectronic Circuits
SJTU Yang Hua
The Noninverting Configuration
Effect of finite
open-loop gain
1  R2 / R1
G
1  R2 / R1
1
A
Microelectronic Circuits
SJTU Yang Hua
The Voltage follower
(a) The unity-gain buffer or follower amplifier.
(b) Its equivalent circuit model.
Microelectronic Circuits
SJTU Yang Hua
The Weighted Summer
Microelectronic Circuits
SJTU Yang Hua
The Weighted Summer
Ra Rc
Ra Rc
Rc
Rc
vo  v1 ( )( )  v2 ( )( )  v3 ( )  v4 ( )
R1 Rb
R2 Rb
R3
R4
Microelectronic Circuits
SJTU Yang Hua
R2 // R3 // R4
R1 // R3 // R4
R2 // R1 // R4
uP 
uI 1 
uI 2 
uI 3
R1  R2 // R3 // R4
R2  R1 // R3 // R4
R3  R2 // R1 // R4
Rf
R2 // R3 // R4
R1 // R3 // R4
R2 // R1 // R4
uo  (1 
)(
uI 1 
uI 2 
uI 3 )
R R1  R2 // R3 // R4
R2  R1 // R3 // R4
R3  R2 // R1 // R4
Microelectronic Circuits
SJTU Yang Hua
Example 2.6: A Single Op-Amp
Difference Amplifier
Linear amplifier.
Theorem of linear
Superposition.
Microelectronic Circuits
SJTU Yang Hua
A Single Op-Amp Difference
Amplifier
Application of superposition
Inverting configuration
R2
vo1   vI 1
R1
Microelectronic Circuits
SJTU Yang Hua
A Single Op-Amp Difference
Amplifier
Application of superposition.
Noninverting configuration.
R2
R4
vo 2  (1  )(
)vI 2
R1 R4  R3
vo  vo1  vo 2
R4 R2
R2
vI 2  vI 1 
if

, vo 
R3 R1
R1
Microelectronic Circuits
SJTU Yang Hua
Integrators
The inverting configuration with general impedances in
the feedback and the feed-in paths.
Microelectronic Circuits
SJTU Yang Hua
The Inverting Integrators
The Miller or inverting integrator.
Microelectronic Circuits
SJTU Yang Hua
Microelectronic Circuits
SJTU Yang Hua
Frequency Response of the integrator
Vo s 
1
1


Vi s 
sCR
jCR
Vo
1

Vi CR
  90
Microelectronic Circuits

SJTU Yang Hua
The op-amp Differentiator
Microelectronic Circuits
SJTU Yang Hua
The op-amp Differentiator
  90

Frequency response of a differentiator with a time-constant RC.
Microelectronic Circuits
SJTU Yang Hua
Practical op-amp Differentiator
disadvantages:
1 )输入电压的阶跃变化和外界的脉冲干
扰,会使集成运放进入非线性区,出现阻
塞现象。
2) 反馈网络为滞后环节,它与集成运放
内部的滞后环节相叠加易于满足自激振荡
的条件。
R1:限制输入电流,也就限制了R中的电
流。DZ1(2):稳压二极管限制了输出电
压保证了放大管工作在线性区,防止了阻
塞。C1:相位补偿作用,提高电路的稳
定性。
Microelectronic Circuits
SJTU Yang Hua
Logarithm operation
Microelectronic Circuits
SJTU Yang Hua
Exponential operation
uBE  uI
iR  iE  I S e
Microelectronic Circuits
uI
UT
SJTU Yang Hua
Microelectronic Circuits
SJTU Yang Hua
Instrumentation Amplifier
UA=UI1,UB=UI2
uI1  uI 2 
R2
(uo1  uo 2 )
2 R1  R2
2 R1
uo1  uo 2  (1 
)( uI 1  uI 2 )
R2
Output voltage:
uo  
Rf
R
(uo1  uo 2 )
Rf
2 R1

(1 
)( uI 1  uI 2 )
R
R2
Microelectronic Circuits
SJTU Yang Hua
Integrated Instrumentation Amplifier
三、集成仪表用放大器
6连7,增益为1
2连6和7,增益为10
3连6和7,增益为100
5连6/4连7,增益为1000
INA102
Microelectronic Circuits
SJTU Yang Hua
exercises:
Microelectronic Circuits
SJTU Yang Hua
Homework:

June 3rd, 2009
2.36; 2.44; 2.61; 2.65
Microelectronic Circuits
SJTU Yang Hua
Related documents