Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 10 Analog Integrated Circuits and its application Introduction The 741 Op-Amp Circuit The ideal Op Amp The inverting configuration The noninverting configuration Integrator and differentiator Other operation application Microelectronic Circuits SJTU Yang Hua Introduction 信号的提取:传感器、接收器或信号发生器,通常信号比较微弱,且易受 干扰,甚至与噪声的幅度相当。 信号预处理:信号的分离与放大(隔离、滤波与阻抗变换) 信号的加工:信号的运算、转换和比较等。一般再经功放才能驱动负载, 或者经A/D转换到PC机 信号的执行:一般为CPU(MCU,DSP,PC) Microelectronic Circuits SJTU Yang Hua Content Part 1. The 741 Op-Amp Circuit and analysis. Part 2. Analog integrated circuits’ application _ the application of operational amplifier _ the application of comparer circuits Microelectronic Circuits SJTU Yang Hua Part I: Analog ICs include operational amplifiers, analog multipliers, A/D converters, D/A converters, PLL, etc. A complete op amp is realized by combining analog circuit building blocks. The bipolar op-amp has the general purpose variety and is designed to fit a wide range of specifications. The terminal characteristics is nearly ideal. Microelectronic Circuits SJTU Yang Hua The 741 Op-Amp Circuit Microelectronic Circuits SJTU Yang Hua Structure “化整为零”:划分偏置电路、输入级、中间级和 输出级 “分析功能”:分别分析各部分的结构形式及特 点 “统观整体” :研究各部分电路之间的联系 “定量估算”:必要时做定量分析 Microelectronic Circuits SJTU Yang Hua General Description 24 transistors, few resistors and only one capacitor Two power supplies Short-circuit protection Microelectronic Circuits SJTU Yang Hua Microelectronic Circuits SJTU Yang Hua Microelectronic Circuits SJTU Yang Hua The Input Stage The input stage consists of transistors Q1 through Q7. Q1-Q4 is the differential version of CC and CB configuration. High input resistance. Current source (Q5-Q7) is the active load of input stage. It not only provides a high-resistance load but also converts the signal from differential to single-ended form with no loss in gain or common-mode rejection. Microelectronic Circuits SJTU Yang Hua The Intermediate Stage The intermediate stage is composed of Q16, Q17 and Q13B. Common-collector configuration for Q16 gives this stage a high input resistance as well as reduces the load effect on the input stage. Common-emitter configuration for Q17 provides high voltage gain because of the active load Q13B. Capacitor Cc introduces the miller compensation to insure that the op amp has a very high unitgain frequency. Microelectronic Circuits SJTU Yang Hua Microelectronic Circuits SJTU Yang Hua The Output Stage The output stage is the efficient circuit called class AB output stage. Voltage source composed of Q18 and Q19 supplies the DC voltage for Q14 and Q20 in order to reduce the cross-over distortion. Q23 is the CC configuration to reduce the load effect on intermediate stage. Short-circuit protection circuitry Forward protection is implemented by R6 and Q15. Reverse protection is implemented by R7, Q21, current source(Q24, Q22) and intermediate stage. Microelectronic Circuits SJTU Yang Hua The Output Stage (a) The emitter follower is a class A output stage. (b) Class B output stage. Microelectronic Circuits SJTU Yang Hua The Output Stage Wave of a class B output stage fed with an input sinusoid. Positive and negative cycles are unable to connect perfectly due to the turn-on voltage of the transistors. This wave form has the nonlinear distortion called crossover distortion. To reduce the crossover distortion can be implemented by supplying the constant DC voltage at the base terminals. Microelectronic Circuits SJTU Yang Hua The Output Stage QN and QP provides the voltage drop which equals to the summer of turn-on voltages of QN and QP. This circuit is call Class AB output stage. Microelectronic Circuits SJTU Yang Hua Microelectronic Circuits SJTU Yang Hua The Biasing Circuits Reference current is generated by Q12, Q11 and R5. Wilder current provides biasing current in the order of μA. Double-collector transistor is similar to the twooutput current mirror. Q13B provides biasing current for intermediate stage, Q13A for output stage. Q5, Q6 and Q7 is composed of the current source to be an active load for input stage. Microelectronic Circuits SJTU Yang Hua The Ideal Op Amplifier symbol for the op amp Microelectronic Circuits SJTU Yang Hua The Ideal Op Amplifier uo o uP uN The op amp shown connected to dc power supplies. Microelectronic Circuits SJTU Yang Hua Characteristics of the Ideal Op Amplifier Differential input resistance is infinite. Differential voltage gain is infinite. CMRR is infinite. Bandwidth is infinite. Output resistance is zero. Offset voltage and current is zero. a) b) No difference voltage between inverting and noninverting terminals. No input currents. Microelectronic Circuits SJTU Yang Hua Ideal Op amplifier works at linear region uo = Aod ( uN - uP ) u 1. Differential input voltage is zero N u P uN = uP Virtual short circuit feedback iN +A od iP - 2. Input current is zero iN = iP = 0 Virtual disconnect circuit Working at linear region → circuit with negative feedback Microelectronic Circuits SJTU Yang Hua u o Ideal Op amplifier works at nonlinear region uo ≠ Aod ( u+ - u- ) 1. Vo have only two value uo uo = + UOPP when u+> u- uo = - UOPP when u+ < u- o uP uN Virtual short circuit doesn’t exsist 2. i+ = i- =0 Virtual disconnect-circuit Microelectronic Circuits SJTU Yang Hua Equivalent Circuit of the Ideal Op Amp Microelectronic Circuits SJTU Yang Hua The Inverting Configuration Virtual short circuit. vo v2 v1 0 A Virtual disconnect-circuit i i 0 Virtual ground: that is, having zero voltage but not physically connected to ground Microelectronic Circuits SJTU Yang Hua The Inverting Configuration vo closed - loop gain : G vI The inverting closed-loop configuration. Microelectronic Circuits SJTU Yang Hua The Inverting Configuration Microelectronic Circuits SJTU Yang Hua Effect of finite open-loop gain vo R2 / R1 G vI 1 (1 R2 / R1 ) / A Microelectronic Circuits SJTU Yang Hua The Inverting Configuration Shunt-shunt negative feedback Closed-loop gain depends entirely on passive components and is independent of the op amplifier. Engineer can make the closed-loop gain as accurate as he wants as long as the passive components are accurate. Exercises: example 2.2 Microelectronic Circuits SJTU Yang Hua Example2.2 Microelectronic Circuits SJTU Yang Hua Homework: May 27th, 2009 2.8; 2.22 Microelectronic Circuits SJTU Yang Hua The Non-inverting Configuration The noninverting configuration. Series-shunt negative feedback. Microelectronic Circuits SJTU Yang Hua The Noninverting Configuration Effect of finite open-loop gain 1 R2 / R1 G 1 R2 / R1 1 A Microelectronic Circuits SJTU Yang Hua The Voltage follower (a) The unity-gain buffer or follower amplifier. (b) Its equivalent circuit model. Microelectronic Circuits SJTU Yang Hua The Weighted Summer Microelectronic Circuits SJTU Yang Hua The Weighted Summer Ra Rc Ra Rc Rc Rc vo v1 ( )( ) v2 ( )( ) v3 ( ) v4 ( ) R1 Rb R2 Rb R3 R4 Microelectronic Circuits SJTU Yang Hua R2 // R3 // R4 R1 // R3 // R4 R2 // R1 // R4 uP uI 1 uI 2 uI 3 R1 R2 // R3 // R4 R2 R1 // R3 // R4 R3 R2 // R1 // R4 Rf R2 // R3 // R4 R1 // R3 // R4 R2 // R1 // R4 uo (1 )( uI 1 uI 2 uI 3 ) R R1 R2 // R3 // R4 R2 R1 // R3 // R4 R3 R2 // R1 // R4 Microelectronic Circuits SJTU Yang Hua Example 2.6: A Single Op-Amp Difference Amplifier Linear amplifier. Theorem of linear Superposition. Microelectronic Circuits SJTU Yang Hua A Single Op-Amp Difference Amplifier Application of superposition Inverting configuration R2 vo1 vI 1 R1 Microelectronic Circuits SJTU Yang Hua A Single Op-Amp Difference Amplifier Application of superposition. Noninverting configuration. R2 R4 vo 2 (1 )( )vI 2 R1 R4 R3 vo vo1 vo 2 R4 R2 R2 vI 2 vI 1 if , vo R3 R1 R1 Microelectronic Circuits SJTU Yang Hua Integrators The inverting configuration with general impedances in the feedback and the feed-in paths. Microelectronic Circuits SJTU Yang Hua The Inverting Integrators The Miller or inverting integrator. Microelectronic Circuits SJTU Yang Hua Microelectronic Circuits SJTU Yang Hua Frequency Response of the integrator Vo s 1 1 Vi s sCR jCR Vo 1 Vi CR 90 Microelectronic Circuits SJTU Yang Hua The op-amp Differentiator Microelectronic Circuits SJTU Yang Hua The op-amp Differentiator 90 Frequency response of a differentiator with a time-constant RC. Microelectronic Circuits SJTU Yang Hua Practical op-amp Differentiator disadvantages: 1 )输入电压的阶跃变化和外界的脉冲干 扰,会使集成运放进入非线性区,出现阻 塞现象。 2) 反馈网络为滞后环节,它与集成运放 内部的滞后环节相叠加易于满足自激振荡 的条件。 R1:限制输入电流,也就限制了R中的电 流。DZ1(2):稳压二极管限制了输出电 压保证了放大管工作在线性区,防止了阻 塞。C1:相位补偿作用,提高电路的稳 定性。 Microelectronic Circuits SJTU Yang Hua Logarithm operation Microelectronic Circuits SJTU Yang Hua Exponential operation uBE uI iR iE I S e Microelectronic Circuits uI UT SJTU Yang Hua Microelectronic Circuits SJTU Yang Hua Instrumentation Amplifier UA=UI1,UB=UI2 uI1 uI 2 R2 (uo1 uo 2 ) 2 R1 R2 2 R1 uo1 uo 2 (1 )( uI 1 uI 2 ) R2 Output voltage: uo Rf R (uo1 uo 2 ) Rf 2 R1 (1 )( uI 1 uI 2 ) R R2 Microelectronic Circuits SJTU Yang Hua Integrated Instrumentation Amplifier 三、集成仪表用放大器 6连7,增益为1 2连6和7,增益为10 3连6和7,增益为100 5连6/4连7,增益为1000 INA102 Microelectronic Circuits SJTU Yang Hua exercises: Microelectronic Circuits SJTU Yang Hua Homework: June 3rd, 2009 2.36; 2.44; 2.61; 2.65 Microelectronic Circuits SJTU Yang Hua