Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja dystrybuowana jest bezpłatnie Lecture 13 Two-port networks Definition of 2-port 2-port network is a 4-terminal circuit structure of two terminals forming input and 2 terminals forming output port at following conditions satisfied I1 I1' , I 2 I 2' 3 2-port matrix description Admittance form - (I1, I2) expressed as function of (U1, U2) Impedance form - (U1, U2) expressed as function of (I1, I2) Hybrid form - (U1, I2) expressed as function of (I1, U2) Inverse hybrid form - (I1, U2) expressed as function of (U1, I2) Chain form - (U1, I1) expressed as function of (U2, I2) Inverse chain form - (U2, I2) expressed as function of (U1, I1). 4 2-port matrix description (cont.) 1) Admittance desription I1 Y11 Y12 U1 U1 I Y Y U Y U 2 21 22 2 2 2) Impedance desription U1 Z11 Z12 I1 I1 Z U Z 2 21 Z 22 I 2 I 2 Y Z 1 3) Hybrid desription 5 U1 H11 I H 2 21 H12 I1 I1 H H 22 U 2 U 2 2-port matrix description (cont.) 4) Inverse hybrid desription I1 G11 G12 U1 U1 G U G 2 21 G22 I 2 I2 G H 1 5) Chain desription U1 A11 I A 1 21 6 A12 U 2 U2 A A22 I 2 I 2 Example Determine the matrix description of 2-port Solution: I1 I I 2 YU 2 1 Z 2Y I 2 U1 U 2 Z1I1 Z 2 I 2 U1 1 Z1Y U 2 Z1 Z2 Z1Z2Y I 2 Chain description 7 U1 1 Z1Y I Y 1 Z1 Z 2 Z1Z 2Y U 2 I 1 Z 2Y 2 Transfer function and 2-port description Any transfer function can be expressed through the 2-port parameters. For example voltage transfer function • chain matrix description H u (s) U 2 (s) 1 U 1 ( s ) A11 • admittance matrix description H u (s) 8 U 2 (s) Y 21 U1 ( s) Y22 9 Input impedance • Impedance in general form U1 ( s) A11 A12Yo Z we ( s) I1 ( s) A21 A22Yo • No load of the 2-port (Yo=0) A11 Z we ( s ) A21 • Short circuit of output port (Zo=0) Z we ( s ) A12 A22 Example Determine the input impedance of the 2-port Chain matrix Voltage transfer function 1 Z1Y A Y Z1 Z 2 Z1Z 2Y 1 Z 2Y U 2 (s) 1 1 Z Tu ( s) U1 ( s ) A11 1 Z1Y Z Z1 Input impedance 10 U1 ( s) A11 A12Yo (1 Z1Y ) ( Z1 Z 2 Z1Z 2Y )Yo Z we ( s) I1 ( s) A21 A22Yo Y (1 Z 2Y )Yo Connections of 2-ports Chain connection A A1 A 2 , A A1 A 2 A n , A1 A 2 A 2 A1 Series connection Z Z1 Z 2 , n Z Zi i 1 11 Connections of 2-ports (cont.) Parallel connection Y Y1 Y2 , n Y Yi i 1 Series-parallel connection H H1 H 2 , n 12 H Hi i 1 Connections of 2-ports (cont.) Parallel-series connection G G1 G 2 , n G Gi i 1 13 Gyrator U1 0 I G 1 z Rz U 2 0 I 2 Loading gyrator by the impedance Zo the input impedance of the connection is inversely proportional to Zo. Z we 14 A11 A12Yo Rz2 A21 A22Yo Z o Gyrator loaded by capacitor Let us assume that Zo = 1/sC . In such case the input impedance of this connection represents the inductor. Z we sRz2C 15 L Rz2C Negative impedance converters (NIC) Negative impedance converter (NIC) converts either the current or voltage with the negative sign. •NIC with inversion of current (INIC) 0 U2 U1 1 I 0 K I i 2 1 •NIC with inversion of voltage (VNIC) U1 Ku I 0 1 16 0 U 2 1 I 2 NIC loaded by an impedance Input impedance of the connection Z we Z U1 U2 o I1 K i ( I 2 ) Ki Loading NIC by impedance Zo we implement the negative Zo. Observe that applying NIC we may introduce the instability to the circuit! 17