Download Measurement

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
International ARENA Workshop
at DESY, Zeuthen
May 2005
Measurements and Simulation Studies of
Piezoceramics for Acoustic Detection
Karsten Salomon
Universität Erlangen-Nürnberg
Motivation
• Development and simulation of calibration sources for acoustic
detection
• Simulation of detector devices
• Understanding of the whole system emitter to receiver
(finding the transfer functions)
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Sources for Calibration for Acoustic Particle
Detection
Electric bulbs
Heated wires
Laser
Piezos
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Piezoelectric Effect
• Equation of motion of piezos is complicated coupled Partial Differential Equations (PDE) of an anisotropic
material:
– Hooke’s law + electrical coupling
– Gauss law + mechanical coupling
• Finite Element Method chosen to solve these PDE
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Displacement
• Motivation: Calibration of sound source to measure the
sensitivity of the hydrophone
• Simulation: Displacement of a piezo disc due to electrical
voltage is simulated for different frequencies using CAPA
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Schematic of the Interferometer
• Measurement: Direct measurement of the displacement with a
self built fibre coupled interferometer
– Multiple reflections between piezo and fibre ending
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Setup of the Interferometer
2cm
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Calibration of the Interferometer
•
•
•
•
Description possible
with geometric series
dU proportional dx
Calibration before each
measurement
Photodiode voltage
proportional to intensity
Precision of ~0.1nm
PhotodiodenVoltage
Spannung
(V)(V)
Photodiode
•
dx
4
Measurement
Cos^2 Approx
Geometric series
3,5
3
2,5
dUPhoto
2
1,5
1
0,5
-/8
0
0
/8
0
5
10
Aktuator Spannung (V)
Actuator
Voltage (V)
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
15
Displacement - Results
• Measurement: white
noise applied to
Piezos
• Simulation: Finite
Element Method
• Eigenfrequencies
-->no flat frequency
response
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Sending Signals with the Piezo
• Frequency response -> response to arbitrary signal
• As a source for calibration a pressure signal is needed
• How does the movement of the piezo result in a defined
pressure signal?
• Small excursion: signal production in water
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Signal Production in Water
•
Signal propagation in water is described with a wave equation
1  2
  2 2  0
c t
•
If the sent wavelength is larger than the dimension of the transmitter,
then:

V (t  r / c)

t

4r
•
Change in volume dVA dx
•
Equation for pressure:
•
Displacement of piezo is proportional to the applied voltage
•
Outside resonances, the second derivative of the applied
voltage will be sent
2
V (t  r / c)
2

p   0
   0 t
t
4r
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Direction Characteristics:
Simulation and Measurement
• Simulation of a piezo disc R=7.5mm H=5mm
• Coupling of the piezo displacement to water
• Acoustic field after 20 µs when applying a 20kHz sine:
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Direction Characteristics:
Simulation and Measurement
Simulation
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Measurement
Impedance of the Piezo:
Simulation and Measurement
• Motivation:
– Understand electrical properties of the piezo
– Calculate parameters for equivalent circuit diagram
• Simulation
– Apply charge pulse to the piezo.
– Calculate voltage response.
– Impedance is given in the frequency domain as:
U ( )
U ( )
Z ( ) 

I ( ) iQ( )
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Impedance of the Piezo:
Equivalent Circuit Diagram
• First resonance and antiresonance of a piezo can be described
with an equivalent circuit diagram:
• L,C and R are equivalent to mass, stiffness and damping
• With these parameters one gets a simplified piezo model
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Impedance of the Piezo:
Simulation and Measurement
• Far from resonances, the piezo acts like a capacitor Z~1/f
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Measurement: Displacement of a
Commercial Hydrophone
• Measurement with Laser Doppler Vibrometer
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Measurement: Displacement of a
Commercial Hydrophone
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Summary
• Summary:
– Simulation in good agreement with measurement of piezos
– Signal propagation in water described by simulation
– Ideas how to calibrate hydrophones with impedance
measurements
– First steps how to calibrate hydrophones with displacement
measurements
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Thanks for your attention
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
The Finite Element Method
• Numerical method to solve PDE with boundary value problems
• Areas are discretisized into cells (finite elements)
• Within a finite element characteristic functions are defined
• Linear combinations of these functions then give possible
solutions within an element
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Measurement: displacement of the HTI
• Measurement with a Laser Doppler Velocimeter
• Clearly seen a Peak at 57kHz but
• Measurement: send different gaussians with HTI and receive
with same type of HTI. Calculate Transferfunction:
1 N FFT (received _ Signal (i ))
Transferfunc _ gauss 
 FFT ( gaussian ( ))
N  1 i 1
i
Transferfunc _ disp  (2f ) 2 disp ( f ) 2
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Measurement: displacement of the HTI
• Explanaition: Additional damping due to water not completely
known.
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Emulating a Neutrino Signal
• Calculated neutrino signal in
400m distance following the
thermoacoustic model for a
1PeV shower.
• Send two times integrated
neutrino signal
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Displacement using this Signal
• But: Amplifiing the frequencies at the resonances
Simulation
• Send:
Measurement
Signal in frequency space
Frequency response of the piezo
• Simpler: Use a piezo with relatively flat frequency response
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Receiving the Bipolar Signal
Signal
Measured
Second deriv. of
signal
K. Salomon, Universität Erlangen-Nürnberg
International ARENA Workshop, May 2005
Related documents