Download Miniscale Energy Generation

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Miniscale Energy
Generation
Peter C. Gravelle, Borce Gorevski, Nick Ieva
Sponsor/Advisor: Dr. S. Lyshevski,
Electrical Engineering Department
The Team
Left to Right:
Nick Ieva, Peter C. Gravelle , Borce Gorevski
Advisor/Sponsor: Dr. S Lyshevski
Objective

To design and prototype a self-sufficient miniscale generator.
Block Diagram/Roadmap
Velocity of Water
Angular velocity
of turbine
Velocity of
magnets over
windings
Store in
supercapacitor
Rectifier (ACDC)
No
Is voltage
too high?
DC-DC conversion
(increase voltage)
Yes
Zener diode burns
excess energy
Load
Current in
windings (AC)
Goals


Sub-20 cm3 volume
At least 0.1 W/cm3


Turbine (Runner) with permanent magnets


We want to exceed these
Salt-water resistant (nautical/sharks)
Output voltage greater than 7V
Design Choices

Generator
Turbine
 Magnets
 Windings


Electronics
Energy storage
 Energy harvesting circuitry


Housing
Turbine
Pelton Turbine
Francis Turbine
We Picked a Pelton-like wheel
Technical Details: Turbine


Diameter of turbine: <2.5cm
Material: plastic


Nylon (reinforced or not?)
Magnets mounted on wheel using water-proof
epoxy.
Magnets

SmCo
Corrosion resistant
 More expensive
 Weaker


NdFeB
Very highly magnetic
 Low cost
 Very corrodible

Magnet Feasibility Graph
Feasibility Chart: Magnets
T1
3
2
1
E1
T2
NdFeB
SmCo
0
T4
T3
Humidity Resistance
Field Strength
Salt Environment
Small Pieces
Cost
T1
T2
T
T4
E1
sm
NdFeB
1
3
1
3
3
11
SmCo
3
2
3
1
1
10
We’re using NdFeB




Dr. Lyshevski recommended it
Cheaper
Stronger
More easily machined into small parts



Small arcs required for our design
Corrosion can be dealt with by plastic coating
Right now looking at ring magnets with OD = 0.625”,
ID = 0.250”, and thickness of either 0.250” or 0.375”
Field Simulation for N35 grade
NdFeB (3mm dia, 1mm thick disc)
6.942e-001 : >7.279e-001
6.605e-001 : 6.942e-001
6.268e-001 : 6.605e-001
5.931e-001 : 6.268e-001
5.594e-001 : 5.931e-001
5.257e-001 : 5.594e-001
4.920e-001 : 5.257e-001
4.583e-001 : 4.920e-001
4.246e-001 : 4.583e-001
3.909e-001 : 4.246e-001
3.572e-001 : 3.909e-001
3.235e-001 : 3.572e-001
2.898e-001 : 3.235e-001
2.561e-001 : 2.898e-001
2.224e-001 : 2.561e-001
1.887e-001 : 2.224e-001
1.550e-001 : 1.887e-001
1.213e-001 : 1.550e-001
8.759e-002 : 1.213e-001
<5.389e-002 : 8.759e-002
Density Plot: |B|, Tesla
Windings


Winding wire will be supplied by Dr. Lyshevski
Axial motor winding pattern

Pattern will be made of plastic (see below)
Energy Storage

Batteries





High energy density
Limited charge cycles
Lower voltage
Temperature sensitivity
Supercapacitors




High (but lower than batteries) energy density
Unlimited charge cycles
Higher voltage
Temperature insensitive ( -40C to 70C)
Batteries vs. Supercapacitors
Feasibility Assessment: Energy Storage
T1
3
Li-ion Batteries
Supercapacitors
T2
E1
2
1
S1
T3
0
T4
T8
T5
T7
T6
Energy
Density
Power
Density
T1
Li-ion Batteries
Supercapacitors
Life
Charging
Discharging
Circuit
Operating
Temp
Self-Discharge
H2O
Safety
Cost
T4
T5
T6
T7
T8
S1
E1
sum
1
1
1
1
2
3
1
1
15
3
3
3
3
3
1
3
1
25
Size
Max
Voltage
T2
T3
3
1
2
3
We picked Supercapacitors





Smaller size
Greater cycle life
Will not ignite in water
Greater power density
High voltage density
Feasibility for Supercapacitors
Capacit
ance
Capacitance
Nom. Voltage
Max Current
Size
ESR
Nom.
Voltage
Max
Current
Size
ESR
Row
Total
\
-
\
\
1.5
\
\
|
1
|
|
-
Colum
n Total
Row +
Colum
n
Relative
Weights
1.5
0.2
0.5
1.5
0.2
0
0.5
0.5
0.066667
1
2
3
0.4
1
1
0.133333
Sum
7.5
1
Capacitance
Nom. Voltage
Max Current
Size
ESR
Sum
Normalized Sum
0.2
0.2
0.066667
0.4
0.133333
1
1
2
3
5
5
5
3
3
4
5
5
1
2
2
2.866667 3.666667 3.866667
0.68254 0.873016 0.920635
3
5
3
5
3
4.2
1
B49100B1104Q000 (flat)
B49100A1503Q000 (flat)
GW 2 13D (flat)
PC5-5 (flat)
PC5 (flat)
FE0H104Z (cyl)
FE0H473Z (cyl)
FA0H473Z (cyl)
FT0H224Z (cyl)
FT0H104Z (cyl)
FS0H473Z (cyl)
FS0H223Z (cyl)
HPSK0G103ZL (flat)
Relative Weights
Feasibility for Super Capacitors
3
2
2
3
5
4
4
4
5
5
5
5
5
2
4
4
1
1
3
5
5
5
5
5
5
4
5
4
3
4
3
2
0
1
2
1
3
3
3
4
5
5
5
5
5
3.8
3.333333 3.733333 3.666667
3.2
2.6
3
2.733333
2.6
0.904762 0.793651 0.888889 0.873016 0.761905 0.619048 0.714286 0.650794 0.619048
Energy Harvesting: AC-DC

Standard bridge rectifier
Takes AC input and turns it into DC output
 We will be using a capacitor for additional
smoothing

Harvesting Circuitry: Voltage
Regulation

Switched-capacitor DC-DC voltage converter




Efficiency: 88-96%
Doubles input voltage
Max output current: 200mA
Step-up (boost) converter




Has an efficiency of 60-90%
But needs more parts (volume, cost)
Adjustable output voltage/current
More robust


Voltage/thermal/current protections
Max output current: 1A
Voltage Conversion Feasibility
T1
3
2.5
2
1.5
T7
T2
1
0.5
0
Switched Capacitor
Boost Conversion
T6
T3
T5
T4
Ease
Of
Design
Efficiency
Tunable
Robust
Max
Current
Operating
temperature
EMI
Volume
T1
T2
T3
T4
T5
T6
T7
T8
sum
Switched
Capacitor
3
3
1
1
1
2
3
3
17
Boost
Conversion
1
1
3
3
3
3
1
1
16
Housing Design
House Design

This cylindrical
casing was
designed so we
can save on
volume
Housing Design
Our final design has the
codename: Windmill please note the extended
shaft
The idea came from a
meeting with Dr.
Lyshevski
Questions and Comments
Related documents