Download BJT Amplifier I

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EKT104 ANALOG
ELECTRONIC CIRCUITS
[LITAR ELEKTRONIK ANALOG]
BASIC BJT AMPLIFIER
(PART I)
DR NIK ADILAH HANIN BINTI ZAHRI
[email protected]
1
Analog Signals & Linear Amplifiers
Analog signals
•
•
•
Natural analog signals: physical sense (hearing, touch, vision)
Electrical analog signals: e.g. output from microphone, output signal from
compact disc - form of time-varying currents & voltages
Magnitude: any value which vary continuously with time
Analog circuits
•
•
Electronic circuits which produce analog signals
E.g. linear amplifier
Linear amplifier
•
Magnifies input signal & produce output signal that is larger & directly
proportional to input signal
Block diagram of a
compact disc
player system
DC power
(a)
Signal
source
a) Low signal power
b) High signal power
DC voltage
source
(b)
Amplifier
Load
2
The Bipolar Linear Amplifier
(a) Bipolar transistor inverter circuit; (b) inverter transfer characteristics
• To use circuit as an amplifier, transistor needs to be biased with
•
DC voltage at quiescent point (Q-point)  transistor is biased
in forward active operating mode
Time-varying output voltage is directly proportional to & larger
3
than time-varying input voltage  linear amplifier
The Bipolar Linear Amplifier
Variable
iB, vBE
•
Meaning
Total instantaneous values
DC values
IB, VBE
Instantaneous ac values
ib, vbe
Summary of notation
Phasor values
Ib, Vbe
4
Graphical Analysis & AC
Equivalent Circuit
VC
C
iC
vO
RB
vs
iB
RC
vCE
vBE
VBB
Figure (c)
(c) Common-emitter circuit with
time varying signal source in series
with base dc source
Figure (d)
(d) Common-emitter transistor characteristics, dc load line, and sinusoidal
variation in base current, collector current, and collector-emitter voltage
5
Graphical Analysis & AC
Equivalent Circuit
• Base on Figure (c) & (d)
(time-varying signals linearly related & superimposed on dc values)
•
iB  I BQ  ib
(1)
iC  I CQ  ic
(2)
vCE  VCEQ  vce
(3)
vBE  VBEQ  vbe
(4)
If signal source, vs = 0:
VBB  I BQ RB  VBEQ (B - E loop)
(5)
VCC  I CQ RC  VCEQ (C - E loop)
(6)
6
Graphical Analysis & AC
Equivalent Circuit
• For B-E loop, considering time varying signals:
VBB  vs  iB RB  vBE
 ( I BQ  ib ) RB  (VBEQ  vbe )
• Rearrange:
VBB  I BQ RB  VBEQ  ib RB  vbe  vs
•
(7)
(8)
Base on (5), left side of (7) is 0. So:
vs  ib RB  vbe
(9)
7
Graphical Analysis & AC
Equivalent Circuit

For C-E loop, considering time varying signals:
VCC  iC RC  vCE  ( I CQ  ic ) RC  (VCEQ  vce )
(10)
VCC  I CQ RC  VCEQ  ic Rc  vce

(11)
Base on (6), left side of (11) is 0. So:
ic Rc  vce  0
(12)
8
Graphical Analysis & AC
Equivalent Circuit
• Definition of small signal
• Small signal : ac input signal voltages and currents which
are in the order of ±10 percent of Q-point voltages and
currents.
e.g. If dc current is 10 mA, the ac current (peak-to-peak) <
0.1 mA.
9
Graphical Analysis & AC
Equivalent Circuit
• Rules for ac analysis
• Replacing all capacitors by short circuits
• Replacing all inductors by open circuits
• Replacing dc voltage sources by ground connections
• Replacing dc current sources by open circuits
10
Graphical Analysis & AC
Equivalent Circuit
• Equations
RC
•
ic
vs  ib RB  vbe
vO
RB
vs
ib
+
vbe -
+
vce
-
 I BQ 
vbe
ib  
 VT 
•
AC equivalent circuit of C-E with npn
transistor
(ac equivalent circuit of Figure (c))
Base-emitter loop (Input
loop)
Thermal
voltage, 0.026
Collector emitter loop
(Output loop)
ic RC  vce  0
ic  ib
11
Small-signal Hybrid-
Equivalent Circuit
gm=ICQ/VT
vbe = ibrπ
rπ
= diffusion resistance /
base-emitter input
resistance
1/rπ
= slope of iB – VBE curve
r=VT/ICQ
vbe
V
 V
 r  T  F T ,
ib
I BQ
I CQ
gm 
Small signal hybrid-π equivalent circuit
for npn transistor using
transconductance (gm) parameter
I CQ
VT
ic  g m vbe
12
Alternative Form of Small-signal
Hybrid- Equivalent Circuit
 ib
( I b )
Using common-emitter current gain (β) parameter
ic
 
ib
13
Constructing Small-signal hybrid-
VCC
RC
vO
RB
We know that
 i across B  ib
vs
 i across C βib
VBB
 i across E  (β+1)ib
 rπ between B -E
Place a terminal for the transistor
 Common Terminal as ground
B
C
B
C
βib
rπ
E
E
14
Small-signal Voltage Gain
RB
Ic
B
C
Vo
+
Vs
Ib
Vbe
-
 r 
Vs
Vbe  
 r  RB 
+
r
gmVbe
E
RC
Vce
-
Vo  Vce  g mVbe RC
Output signal voltage
 r 
Vo

Small signal voltage gain, Av   g m RC 
Vs
 r  RB 
Input signal voltage
15
Voltage Gain Measurement
VC
C
Example
RC
RB
Given :  = 100, VCC = 12V
VBE = 0.7V, RC = 6k,
RB = 50k, and VBB = 1.2V
vO
vs
VBB
Calculate the collector-emitter voltage
at q-point and small-signal voltage
gain.
16
SOLUTIONS
1.
I BQ 
2.
3.
4.
VBB  VBE ( on)
RB
1.2  0.7

 10 A
50
I CQ  I BQ  100(10A)  1 mA
VCEQ  VCC  I CQ RC  12  (1)(6)  6V
r 
VT
I CQ
I CQ
(100)(0.026)

 2.6 k
1
5.
6.
 r 
Vo
  11.4
Av   g m RC 
Vs
 r  RB 
VT

1
 38.5 mA / V
0.026
gm 
17
Hybrid- Model and Early Effect
Early Effect
• Collector voltage has some effect on collector current
• Collector current increases slightly with increases in
voltage  Early Effect
• Modeled as a linear increase in total current with
increases in VCE
18
Hybrid- Model and Early Effect
Early Voltage (pg 296)
Early Voltage
(VA)
19
Hybrid- Model and Early Effect
transconductance
parameter
ro=VA/ICQ
current gain
parameter
ro = small-signal transistor
output resistance
20
VA = early voltage
Basic Common-Emitter
Amplifier Circuit
VCC
Example
Given :  = 100, VCC = 12V
R1
VBE(on) = 0.7V, RS = 0.5k,
RS
CC
RC
vO
RC = 6k, R1 = 93.7k, R2 = 6.3k
and VA = 100V.
vs
R2
Calculate the small-signal voltage gain.
21
SOLUTION
Small-signal equivalent circuit
Ri
RS
Vs
R1 \\
R2
Ro
B
C
r
gmV
rO
Vo
RC
E
Ri  R1 R2 r
 R1 R2 r


V
V  
 R1 R2 r  RS  s


Ro  ro RC
Vo  g mV ro RC 
 R1 R2 r
Vo

Av    g m 
 R1 R2 r  RS
Vs


r R 
 o C

Ans: ICQ = 0.95mA, VCEQ =6.3V, Av =-163)
22
Exercise
The circuit parameters in Figure are changed to VCC = 5V, R1=35.2kΩ,
R2=5.83kΩ, RC=10kΩ and RS =0, β =100, VBE(on) =0.7V and VA =100V.
Determine the quiescent collector current and collector-emitter
voltage and find the small-signal voltage gain.
Ans: ICQ = 0.21mA, VCEQ =2.9V, Av =-79.1)
23
Self-Reading
Textbook: Donald A. Neamen, ‘MICROELECTRONICS Circuit
Analysis & Design’,3rd Edition’, McGraw Hill International
Edition, 2007
Chapter 5:The Bipolar Junction Transistor
Page: 334-339
Chapter 6: Basic BJT Amplifiers
Page: 370-388.
24
Related documents