Download d- and q-Axis Equivalent Circuits

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Advanced Power Systems
Dr. Kar
U of Windsor
Dr. Kar
271 Essex Hall
Email: [email protected]
Office Hour: Thursday, 12:00-2:00 pm
http://www.uwindsor.ca/users/n/nkar/88-514.nsf
GA: TBA
B20 Essex Hall
Email: TBA & TBA
Office Hour: -----
Course Text Book:





Electric Machinery Fundamentals by Stephen J. Chapman, 4th Edition,
McGraw-Hill, 2005
Electric Motor Drives – Modeling, Analysis and Control by R. Krishnan Pren.
Hall Inc., NJ, 2001
Power Electronics – Converters, Applications and Design by N. Mohan, J.
Wiley & Son Inc., NJ, 2003
Power System Stability and Control by P. Kundur, McGraw Hill Inc., 1993
Research papers
Grading Policy:
Attendance
Project
Midterm Exam
Final Exam
(5%)
(20%)
(30%)
(45%)
Course Content

Working principles, construction, mathematical modeling,
operating characteristics and control techniques for synchronous
machines

Working principles, construction, mathematical modeling,
operating characteristics and control techniques for induction
motors

Introduction to power switching devices

Rectifiers and inverters

Variable frequency PWM-VSI drives for induction motors

Control of High Voltage Direct Current (HVDC) systems
Exam Dates

Midterm Exam:

Final Exam:
Term Projects
Group 1:
Student 1 ([email protected])
Student 2 ([email protected])
Student 3 ([email protected])
Project Title:
Group 2:
Student 1 ([email protected])
Student 2 ([email protected])
Student 3 ([email protected])
Project Title:
Group 3:
Student 1 ([email protected])
Student 2 ([email protected])
Student 3 ([email protected])
Synchronous Machines




Construction
Working principles
Mathematical modeling
Operating characteristics
CONSTRUCTION
Salient-Pole Synchronous Generator
1. Most hydraulic turbines have to turn at low speeds
(between 50 and 300 r/min)
2. A large number of poles are required on the rotor
d-axis
Nonuniform airgap
N
D  10 m
q-axis
Turbin
e
Hydro (water)
Hydrogenerator
S
S
N
Salient-Pole Synchronous Generator
Stator
Cylindrical-Rotor Synchronous Generator
Stator
Cylindrical rotor
Damper Windings
Operation Principle
The rotor of the generator is driven by a prime-mover
A dc current is flowing in the rotor winding which
produces a rotating magnetic field within the machine
The rotating magnetic field induces a three-phase
voltage in the stator winding of the generator
Electrical Frequency
Electrical frequency produced is locked or synchronized to
the mechanical speed of rotation of a synchronous
generator:
fe 
nm P
120
where fe = electrical frequency in Hz
P = number of poles
nm= mechanical speed of the rotor, in r/min
Direct & Quadrature Axes
d-axis
Stator winding
N
Uniform air-gap
Stator
q-axis
Rotor winding
Rotor
S
Turbogenerator
PU System
Per unit system, a system of dimensionless parameters, is used for
computational convenience and for readily comparing the performance
of a set of transformers or a set of electrical machines.
PU Value 
Actual Quantity
Base Quantity
Where ‘actual quantity’ is a value in volts, amperes, ohms, etc.
[VA]base and [V]base are chosen first.
I base 
VAbase
V base
Pbase  Qbase  S base  VAbase  V base I base
Rbase  X base  Z base
Ybase 
Z
PU
I base
V base

Z
ohm
Z base
2
2
V base V base
V base



I base S base VAbase
Classical Model of Synchronous Generator




The leakage reactance of the armature coils, Xl
Armature reaction or synchronous reactance, Xs
The resistance of the armature coils, Ra
If saliency is neglected, Xd = Xq = Xs
jXs
jXl
Ra
+
+
E d
Ia
Vt
0o
Equivalent circuit of a cylindrical-rotor synchronous machine
Phasor Diagram
q-axis
E
IaXs
d
f
IaRa
Ia
d-axis
Vt
IaXl
The following are the parameters in per unit on machine rating of a 555
MVA, 24 kV, 0.9 p.f., 60 Hz, 3600 RPM generator
Lad=1.66
Laq=1.61
Ll=0.15
Ra=0.003
(a) When the generator is delivering rated MVA at 0.9 p. f. (lag) and rated
terminal voltage, compute the following:
(i) Internal angle δi in electrical degrees
(ii) Per unit values of ed, eq, id, iq, ifd
(iii) Air-gap torque Te in per unit and in Newton-meters
(b) Compute the internal angle δi and field current ifd using the following
equivalent circuit
Direct and Quadrature Axes







The direct (d) axis is centered magnetically in the center of the north
pole
The quadrature axis (q) axis is 90o ahead of the d-axis
q: angle between the d-axis and the axis of phase a
Machine parameters in abc can then be converted into d/q frame using q
Mathematical equations for synchronous machines can be obtained from
the d- and q-axis equivalent circuits
Advantage: machine parameters vary with rotor position w.r.t. stator, q,
thus making analysis harder in the abc axis frame. Whereas, in the d/q
reference frame, parameters are constant with time or q.
Disadvantage: only balanced systems can be analyzed using d/q-axis
system
d- and q-Axis Equivalent Circuits
+
+
Rfd
pykd1
-
pyfd
+
vfd
yq
Xl
Xfd
Ifd
Ikd1
Ra
Id
Imd
Rkd1
Xmd
Vtd
pyd
Xkd1
-
-
d-axis
Imd=-Id+Ifd+Ikd1
- yd
Xl
+
pykq1
-
Ikq1
Rkq1
Ra
Imq=-Iq+Ikq1
Iq
Imq
Xmq
pyq
Xkq1
q-axis
Vtq
Small disturbances in a power system
o
o
o
Gradual changes in loads
Manual or automatic changes of excitation
Irregularities in prime-mover input, etc.
Importance of steady-state stability
o
Knowledge of steady-state stability provides valuable information about
the dynamic characteristics of different power system components and
assists in their design
- Power system planning
- Power system operation
- Post-disturbance analysis
Related Terms
o Generator Modeling using the d- and q-axis equivalent circuits
o Transmission System Modeling with a RL circuit
o A Small Disturbance is a disturbance for which the set of equations
describing the power system may be linearized for the purpose of analysis
o Steady-State Stability is the ability to maintain synchronism when the
system is subjected to small disturbances
o Loss of synchronism is the usual symptom of loss of stability
o Infinite Bus is a system with constant voltage and constant frequency,
which is the rest of the power system
o Eigen values and eigen vectors are used to identify system steady-state
stability condition
The Flux Equations


y d  - X md  X l id  X md ikd 1  X md i fd




y kd 1  - X md id  X md  X kd 1 ikd 1  X md i fd


y fd  - X md id  X md ikd 1  X md  X fd i fd


y q  - X mq  X l iq  X mq ikq1


y kq1  - X mq iq  X mq  X kq1 ikq1
Rearranged Flux Linkage equations
 y d  -  X md  X l 
y   - X
md
 kd1  
y fd    - X md

 
y
q

 
y kq1  

 
X md
 X md  X kd1 
X md

X md
X md
X md  X fd


- X mq  X l
- X mq

X mq
- X mq  X kq1

  id 
 i 
  kd1 
  i fd 
 
  iq 
 ikq1 
 

The Voltage Equations
1
0
1
0
1
0
1
0
1
0
py d   vtd  Ra id y q
py kd1   - Rkd1 ikd1
 
p y fd  v fd - R fd i fd
 
p y q  vtq  Ra iq -y d


p y kq1  - Rkq1 ikq1
……………..(1)
The Mechanical Equations
dd
  - 0
dt
d  0
Tm - Te 

dt 2 H
where
Te  y d I q -y q I d
……………..(2)
Linearized Form of the Machine Model
y q0
y d  vtd  Ra id  y q 

0
0
1

1

0
y kd1  - Rkd1 ikd1

1
0
y
fd
 v fd - R fd i fd

1
0
y q  vtq  Ra iq - y d -
y d0

0

1
0
y kq1  - Rkq1 ikq1

 d  
 
0
2H
Tm - Te 
Te  y d 0 I q  I q 0 y d -y q 0 I d - I d 0 y q
……………..(3)
Terminal Voltage
The d- and q-axis components of the machine terminal voltage
can be described by the following equations:
vtd  Vt sin d
vtq  Vt cosd
………………………….(4)
where, Vt is the machine terminal voltage in per unit.
The linearized form of Vtd and Vtq are:
vtd  Vt cosd 0  d
vtq  -Vt sin d 0  d
……………………….…(5)
Substituting ∆Vtd and ∆Vtq in the flux equations:
y q0
y d  Vt cos d 0  d  Ra id  y q 

0
0
1

1

0
y kd1  - Rkd1 ikd1

1
0
y
fd
 v fd - R fd i fd

1
0
y q  -Vt sin d 0  d  Ra iq - y d -
y d0

0

1
0
y kq1  - Rkq1 ikq1

 d  
 
0
2H
Tm - Te 
Te  y d 0 I q  I q 0 y d -y q 0 I d - I d 0 y q
……..(6)
Rearranging the flux equations in a matrix form:
 
………………...…..(7)
 X   S X   R I   B U 


where,
  
 y d 
  
kd1 
y
 y 
fd 

    
 X    y q 

   
 y kq1 
  
 d 
  
   
 y d 
y 
 kd1 

  y fd 
 X    y 
q 

 

  y kq1 



d


  


 Id 


   I kd1 
  

 I    I fd 
  

 

I
q




  I kq1 
v fd 
U    
 Tm 
and…
0
0
0
0

0
0

S   0 - 0
0
0

0
0
0 - 0 I q 0

2H
- 0 R fd
 0

 0

R   0
 0

 0
 0

0
0
0
0
0
0
0
0Vt cos d 0
0
0
0
0
0
0
0 - 0Vt sin d 0
0
0
0
0
0 I d 0
0
2H
0
0
0
0
0
0
0
0
0
0 Ra
0
0
0
0
- 0 Rkd1
0
0
0 Ra
0
0
0
0
0
0
0y q 0
2H
0
- 0y d 0
2H
0 
y q0 

0 

-y d 0 
0 

1 
0 


0 

0 

0 
- 0 Rkq1 

0 
0 

0
0
0

B   0

0
0

0 
0 

0 

0 
0 
2H 
Flux Linkage Equations (from the d- and q-axis equivalent circuits)
 y d  -  X md  X l 
y   - X
md
 kd1  
y fd    - X md

 
y
0
q

 
y kq1  
0
X md
 X md  X kd1 
X md
0
0
X md
0
0
  id 
 i 
X md
0
0
  kd1 
X md  X fd 
0
0
  i fd 
 
0
- X mq  X l 
X mq
  iq 
0
- X mq
- X mq  X kq1  ikq1 
Linearized flux linkage equations:
 y d  -  X md  X l 
y   - X
md
 kd1  
 y fd    - X md

 

y
0
q

 
 y kq1  
0
X md
 X md  X kd1 
X md
0
0
X md
0
0
  id 
 i 
X md
0
0
  kd1 
X md  X fd 
0
0
  i fd 


0
- X mq  X l 
X mq

i
q


0
- X mq
- X mq  X kq1   ikq1 
and thus,
 id  -  X md  X l 
i   - X
md
 kd1  
 i fd    - X md

 
0
 iq  
 ikq1  
0
-  X md  X l 
 -X
md

  - X md

0


0
X md
 X md  X kd1 
X md
0
0
X md
 X md  X kd1 
X md
0
0
 y d 
y 
 kd1 
 y fd 
  X reac -1  y q 
 y kq1 


 d 
  
X md
0
0


X md
0
0

X md  X fd 
0
0


0
- X mq  X l 
X mq

0
- X mq
- X mq  X kq1 
X md
0
0
X md
0
0
X md  X fd 
0
0
0
- X mq  X l 
X mq
0
- X mq
- X mq  X kq1 
-1
 y d 
y 
 kd1 
 y fd 


 y q 
 y kq1 
0
0
0
0
0
………………………………………...(8)
 y d 
0 y kd1 


0  y fd 

0  y q 


0  y kq1 


0  d 
  
 y d 
y 
 id 
 kd1 
i 
 y fd 
 kd1 
I    i fd    X reac -1  y q    X reac -1X 



i
 y kq1 
q




 ikq1 

d


  
: from (8)
 
 X   S X   R I   B U 


 S X   R  X reac  X   B U 
-1


 S   R  X reac -1 X   B U 
: inserting (8) into (7)
  AX   B U 
where,
A  S   RX reac -1 
………..(9)
: system state matrix
System to be Studied
Vt
It
Generator
Infinite Bus
System State Matrix and Eigen Values
System State Matrix: A  S   R X reac -1 
Eigen Values: 1, 2  -  j
j
1
q
2

Eigen Values
o
Eigen values are the roots of the characteristic equation
 
 X    AX   B U 


o
o
Number of eigen values is equal to the order of the characteristic
equation or number of state variables
t
Eigen values describe the system response (e 1 ) to any disturbance
Analyzing the Eigen Values of the System State Matrix
o
o
o
Compute the eigen values of the system state matrix, A
The eigen values will give necessary information about the steady-state
stability of the system
Stable System: If the real parts of ALL the eigen values are negative
Example:
o
1 , 2  -0.15  j 2.0
3  -0.0005
A system with the above eigen values is on the verge of instability
Machine Parameters
Salient-pole synchronous generator
3kVA, 220V, 4-pole, 60 Hz and 1800 r/min
Machine parameters
Per unit values
d-axis magnetizing reactance, Xmd
1.189
q-axis magnetizing reactance, Xmq
0.7164
Armature leakage reactance, Xl
0.100
Field circuit leakage reactance, Xfd
0.276
First d-axis damper circuit leakage reactance, Xkd1
0.181
First q-axis damper circuit leakage reactance, Xkq1
0.193
Armature winding resistance, Ra
0.0186
Field winding resistance, Rfd
0.0058
First d-axis damper winding resistance, Rkd1
0.062
First q-axis damper winding resistance, Rkq1
0.052
Related documents