Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Shunt-Series Feedback Amplifier - Ideal Case * Current feedback Current sampling * * * Feedback circuit does not load down the basic amplifier A, i.e. doesn’t change its characteristics Doesn’t change gain A Doesn’t change pole frequencies of basic amplifier A Doesn’t change Ri and Ro For this configuration, the appropriate gain is the CURRENT GAIN A = AIo = Io/Ii For the feedback amplifier as a whole, feedback changes midband current gain from AIo to AIfo AIo AIfo 1 f AIo Feedback changes input resistance from Ri to Rif Rif * Ri 1 f AIo Feedback changes output resistance from Ro to Rof Rof Ro 1 f AIo * Feedback changes low and high frequency 3dB frequencies Hf 1 f AIo H ECE 352 Electronics II Winter 2003 Ch. 8 Feedback Lf L 1 f AIo 1 Shunt-Series Feedback Amplifier - Ideal Case Gain AIfo Io A I Io i I s Ii I f AIo AIo AIo If f I o 1 f AIo 1 1 Ii Ii Input Resistance Rif Vs Vs Vs I s Ii I f Ii f Io Vs I I i 1 f o Ii Ri 1 f AIo Output Resistance Is=0 Io ’ Vo ' Ro I o ' AIo I i I Ro 1 AIo i Io ' Io ' Io ' But I s 0 so I i I f Rof Vo’ and I f f I o ' so I i f I o ' f Io ' Ii f Io ' Io ' Rof Ro 1 f AIo ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 2 Equivalent Network for Feedback Network * * * * * * * * ECE 352 Electronics II Winter 2003 Ch. 8 Feedback Feedback network is a two port network (input and output ports) Can represent with g-parameter network (This is the best for this feedback amplifier configuration) G-parameter equivalent network has FOUR parameters G-parameters relate input and output currents and voltages Two parameters chosen as independent variables. For G-parameter network, these are input voltages V1 and the output current I2 Two equations relate other two quantities (input current I1 and output V2) to these independent variables Knowing V1 and I2, can calculate I1 and V2 if you know the G-parameter values G-parameters have various units of ohms, conductance (1/ohms=siemens) and no units ! 3 Shunt-Series Feedback Amplifier - Practical Case * * * Feedback network consists of a set of resistors These resistors have loading effects on the basic amplifier, i.e they change its characteristics, such as the gain Can use g-parameter equivalent circuit for feedback network Feedback factor f given by g12 since g12 I1 I2 V1 0 If f Io Feedforward factor given by g21 (neglected) g22 gives feedback network loading on output g11 gives feedback network loading on input Can incorporate loading effects in a modified basic amplifier. Gain AIo becomes a new, modified gain AIo’. Can then use analysis from ideal case I2 I1 g22 * V1 g11 g12I2 g21V1 V2 * AIo ' AIfo 1 f AIo ' Rif Hf 1 f AIo ' H ECE 352 Electronics II Winter 2003 Ch. 8 Feedback Ri 1 Lf f AIo ' Rof Ro 1 f AIo ' L 1 f AIo ' 4 Shunt-Series Feedback Amplifier - Practical Case * * * I2 I1 g22 V1 g11 g12I2 g21V1 ECE 352 Electronics II Winter 2003 * V2 Ch. 8 Feedback How do we determine the g-parameters for the feedback network? For the input loading term g11 We turn off the feedback signal by setting Io = I2 = 0. We then evaluate the resistance seen looking into port 1 of the feedback network. For the output loading term g22 We short circuit the connection to the input so V1 = 0. We find the resistance seen looking into port 2 of the feedback network. To obtain the feedback factor f (also called g12 ) We apply a test signal Io’ to port 2 of the feedback network and evaluate the feedback current If (also called I1 here) for V1 = 0. Find f from f = If/Io’ 5 Example - Shunt-Series Feedback Amplifier * * * * * Two stage [CE+CE] amplifier Transistor parameters Given: =100, rx= 0 Input and output coupling and emitter bypass capacitors, but direct coupling between stages Capacitor in feedback connection removes Rf from DC bias DC bias of two stages is coupled (bias of one affects the other) ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 6 DC Bias Analysis Given : 1 2 100 VC1 VB2 I B1 VB 2 VC1 VBE 2 I E 2 RE 2 0.7V 1I B 2 RE 2 RB 2 15K 12V 12V 1.6V RB1 RB 2 15K 100K I B2 I C1 0.87 m A 34 m A/ V VT 0.0256 V r 1 ECE 352 Electronics II Winter 2003 I C 2 I B 2 100 7.6 A 0.76 m A I C1 I B1 100 8.7 A 0.87 m A (neglecting IB2 ) g m1 3.3V 0.7V 2.6V 7.6 A (<<IC1 =870 A) 1RE 2 1013.4 K VTH 1 VBE1 1.6V 0.7V 8.7 A RTH 1 1RE1 13K (101)0.87K VC1 12 V I C1RC1 12 V 0.87 m A10K 3.3 V RTH 1 RB1 RB 2 100K 15K 13K VTH 1 rx1 rx 2 0 g m2 100 2.9 K g m1 34m A/ V r 2 Ch. 8 Feedback I C 2 0.76 m A 30 m A/ V VT 0.0256V 100 3.3K g m 2 30 m A/ V 7 Example - Shunt-Series Feedback Amplifier * Redraw circuit to show Feedback circuit Type of output sampling (current in this case = Io) Type of feedback signal to input (current in this case = If) Iout’ Io ’ ECE 352 Electronics II Winter 2003 Ch. 8 Feedback Iout’ 8 Example - Shunt-Series Feedback Amplifier Iout’ Io ’ Input Loading Effects Output Loading Effects Io’= 0 R1 R2 R2 RF RE 2 10K 3.4 K 2.5K R1 RF R1 10 K 3.4 K 13.4 K ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 9 Example - Shunt-Series Feedback Amplifier Amplifier with Loading Effects but Without Feedback ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 10 Example - Shunt-Series Feedback Amplifier Midband Gain Analysis Ri2 Is IC’ Iout’ Vi2 R1 R2 I out ' I out ' I c ' V 2 Vi 2 V 1 Is I ' V V V I c 2 i 2 1 s I out ' RC 2 8K 0.89 Ic ' RC 2 RL 8 K 1K AIo Ic ' g V m 2 2 g m 2 30 mA / V V 2 V 2 V 2 I 2 r 2 r r 2 3.3K 2 0.013 Vi 2 I 2 r 2 I 2 1 g m 2 r 2 R2 Ri 2 r 2 1 g m 2 r 2 R2 3.3K 1012.5 K Vi 2 g m1 RC1 Ri 2 g m1 RC1 r 2 1 g m 2 r 2 R2 34 mA / V 10 K 3.3K 1012.5 K 327 V 1 V RS R1 r 1 RB1 10 K 13.4 K 2.9 K 13K 1.7 K IS AIo I out ' 0.89 30 mA / V 0.013 327 1.7 K 193 Is ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 11 Midband Gain with Feedback * Determine the feedback factor f f * Xf Xo If ' Io ' RE 2 3.4 K RE 2 R f 3.4K 10K 0.25 - Calculate gain with feedback AIfo f AIo 193(0.25) 48 AIfo VE 2 I f ' R f I o ' I f 'RE 2 AIo 193 3.9 1 f AIo 1 48 I f ' R f RE 2 I o ' RE 2 AIfo dB 20 log 3.9 11.8 dB * If ' Note f < 0 and AIo < 0 f AIo > 0 as necessary for negative feedback and dimensionless f AIo is large so there is significant feedback. Can change f and the amount of feedback by changing RF. Gain is determined by feedback resistance AIfo 1 f ECE 352 Electronics II Winter 2003 + VE2 RE 2 R f RE 2 Io ' RE 2 R f ' RE 2 4.0 Ch. 8 Feedback 12 Input and Output Resistances with Feedback Ro Ri * Determine input Ri and output Ro resistances with loading effects of feedback network. Ri RS R1 RB1 r1 10K 13.4K 13K 2.9K 1.7 K * Ro RC 2 RL Calculate input Rif and output Rof resistances for the complete feedback amplifier. Rif Ri Rof Ro (1 f AIo ) (49) 1 f AIo 1.7 K 0.035K 49 ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 13 Voltage Gain for Current Gain Feedback Amplifier * Can calculate voltage gain RL AIfo 1K V I 'R RL I out ' 4.2 0.42 V / V AVfo o out L V I R R I R 10 K s s f s s f s s f AVfo (dB) 20 log 0.42 7.5 dB * Note - can’t calculate the voltage gain as follows: Assume AVfo Find AVo AVo 1 f AVo Vo I o RL AIo RL (193)1K 19.3 V / V Vs I s Rs Rs 10 K Calculate f AVo 0.2519.3 V / V 4.8 AVfo Calculate voltage gain with feedback from 19.3 V / V AVo 5.8 V / V 1 f AVo 1 4.8 Magnitude is off by nearly a factor of ten! ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 14 Equivalent Circuit for Shunt-Series Feedback Amplifier * * * Current gain amplifier A = Io/Is Feedback modified gain, input and output resistances Included loading effects of feedback network Included feedback effects of feedback network Significant feedback, i.e. f AIo is large and positive f AIo 193(0.25) 48 Rif AIfoI i Rof AIfo AIo 1 f AIo 193 3.9 1 48 AIfo dB 20 log 3.9 11.8 dB I ARfo o IS Rif Ri 1 f AIo AIo 3.9 f 1 f AIo 0.035K ECE 352 Electronics II Winter 2003 AIfo 1 f RE 2 R f RE 2 4.0 Rof Ro (1 f AIo ) Ch. 8 Feedback 15 Frequency Analysis * * * * * * Hf 1 f ACo 'H Lf ECE 352 Electronics II Winter 2003 Low frequency analysis of poles for feedback amplifier follows Gray-Searle (short circuit) technique as before. Low frequency zeroes found as before. Dominant pole used to find new low 3dB frequency. For high frequency poles and zeroes, substitute hybrid-pi model with C and C (transistor’s capacitors). Follow Gray-Searle (open circuit) technique to find poles High frequency zeroes found as before. Dominant pole used to find new high 3dB frequency. L 1 f ACo ' Ch. 8 Feedback 16 Summary of Feedback Amplifier Analysis * Xs Xi Xo Xf f • Calculate low frequency poles and zeroes. • Determine dominant (highest) low frequency pole L including loading effects of feedback network • Calculate new dominant low frequency L pole Lf . Lf 1 f Ao * • Calculate high frequency poles and zeroes. • Determine dominant (lowest) high frequency pole H including loading effects of feedback network • Calculate new dominant high frequency pole Hf . 1 A * * Hf f o ECE 352 Electronics II Winter 2003 * Identify the amplifier configuration by: Output sampling Io = series configuration Vo = shunt configuration Feedback to input Io = shunt configuration Vo = series configuration Calculate loading effects of feedback network On input On output Calculate appropriate midband gain A’ (modified by loading effects of feedback network) Calculate feedback factor f. Calculate midband gain with feedback Af. Afo Ao 1 f Ao H Ch. 8 Feedback 17 Summary of Feedback Amplifier Analysis ECE 352 Electronics II Winter 2003 Ch. 8 Feedback 18