Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Lecture 04: AC SERIES/ PARALLEL CIRCUITS, VOLTAGE/ CURRENT DIVIDER OBJECTIVES 1. Compute the total circuit impedance for series RLC circuits. 2. Explain the effects of frequency changes on RLC circuit response. 3. Determine circuit voltages and currents in series RLC circuits. 4. Compute voltage drops across components in an RLC circuit using the voltage divider formula. Example #1: Parallel Circuits iS iRL iC R=100 VS XL=100 50V<0o XC=150 (a) Find total impedance • The circuit given is already in freq domain: iS iRL iC R=100 VS XL=100 50V<0o XC=150 100 o Z C 150 90 j150 o j100 Z L 10090 Z R 1000 o Circuit simplification Z total Z C Z R Z L Z C Z RL 100 10090 150 90 100 j100 150 90 141.4245 150 90141.4245 j150 100 j100 150 90 21213 45 21213 45 100 j 50 111.8 26.57 190 18 180 j 60 (b) Draw Impedance Triangle Z 190 18 (180 j 60) o R j R q ZT -j ZT q XC (c) Find is, iC, iRL vs 500 is 26318 mA Z T 190 18 vS vC vR vL 500 V vS 500 iC 33390 mA Z C 150 90 iRL vS 500 353 45 mA Z RL 141.4245 (d) Using Current Divider ZT 190 18 ic iS 26318 mA 150 90 ZC 33390 mA iRL ZT 190 18 iS 26318 mA 10010090 Z RL 353 45 mA Example #2: Find i and vc Elements in Frequency domain • =4 rad/s Time domain vs 10 cos 4t R 5 C 0 .1 F Freq domain Vs 100 R 5 1 XC j( ) j 2.5 C Circuit in Freq Domain (a) The current, i • The current in series circuit, Vs I ZT • The total impedance is; ZT 5 j 2.5 5 j 2.5 5.59 26.56 Vs 100 I ZT 5.59 26.56 1.7926.56 1.6 j 0.8 A (b) The capacitor voltage, VC VC IZC 1.7926.56 j 2.5 1.7926.56 2.5 90 4.48 63.44 V Example #3: Find iX (time domain) Solution: iX (t ) 0.4607 cos2000t 52.63 Example #4: Find Z1 and Z2 Solution: Z1 3 j 21 Z 2 1.535 j8.896 Example #5: Find i(t) Different waveform of VS VS1 and VS2 are different: vs1 20 cos4t 90 vs 2 10 sin 4t 15 When analyzing ac circuit, it is expedient to express both signals as either Sine or Cosine. Change the waveform of VS1 • Using identity: cost sin t 90 sin t cost 90 cost cost 180 sin t sin t 180 Changing Cosine to Sine: vs1 20 cos4t 90 vs1 20 sin 4t 90 90 vs1 20 sin 4t Example #6: (a) Find i(t) Different waveform of VS VS1 and VS2 are different: vs1 20 cos4t 90 vs 2 10 sin 4t 15 When analyzing ac circuit, it is expedient to express both signals as either Sine or Cosine. Change the waveform of VS1 • Using identity: cost sin t 90 sin t cost 90 cost cost 180 sin t sin t 180 Redraw the circuit Elements in Frequency domain • =4 rad/s Time domain vs1 20 sin 4t vs 2 10 sin 4t 15 Freq domain Vs1 200 Vs 2 10 15 R 60 R 60 C 10 mF 1 XC j( ) j 25 C L5H X L jL j 20 Find The Current VT I ZT VT vs1 vs 2 ZT Z1 Z 2 Z3 Solution: VT 29.66 j 2.59 29.77 4.99 V ZT 60 j90 108.1756.31 I 0.28 61.3 A i (t ) 0.28 sin 4t 61.3A (b) Find the vc(t), vL(t) Answer : VC VL 2828.7 V vC (t ) vL (t ) 28 sin 4t 28.7V (c) Find the ic(t), iL(t) Answer : I C 1.12118.7 A I L 1.4 61.3 A iC (t ) 1.12 sin 4t 118.7A iL (t ) 1.4 sin 4t 61.3A (d) Sketch the waveform for vc(t), vL(t), ic(t), iL(t) (e) Explain the phase relationship between V and I for capacitor and inductor. Example #7: Find ZT, IT, VC2, P R2 R1 Xc2 Xc1 R1 10k X C1 12k R3 Vs VS 10V0 Z2 R2 8k X C 2 10k R3 11k Solution • Find the total impedance: Z 2 R3 R2 X C 2 6.56k 23.6 ZT R1 X C1 Z 2 21.7k 42.4 • Then, the total current is: VS 10V0 IT 461A42.4 Z T 21.7 k 42.4 Solution VR2C2 R3 VC2 Z2 6.56k 23.6 VS 10V0 3.03V18.8 ZT 21.7k 42.4 Z C2 Z R2C2 VR2C2 R3 10k 90 3.03V18.8 2.36V 19.8 8k j10k P = VI cos (qT) = (10V)(461 A) cos(-42.4o) = 3.40 mW Ex: Find ZT, IL3, P VS 10V0 R2 R1 XL1 R3 E XL2 Z2 Z3 R4 XL3 R1 5k X L1 4k R2 6k X L 2 2k R3 7k X L 3 3k R4 8k Z2, Z3, ZT, and IT Z 2 3.61k18.38 Z 3 8.41k18.2 Z T 9.87 k31.4 VS IT 1.01mA 31.4 ZT IR3, IL3, P Z2 3.61k18.4 I R3 IT 1.01mA 31.4 435A 31.2 Z3 8.41k18.2 I L3 Z L3R4 Z L3 2.81k69.4 I R3 435A 31.2 407.3A 51.8 3k90 P = EI cos (qT) = (10V)(1.01 mA) cos(31.4o) = 8.62 mW TOOLS • Note from the previous examples, all of our tools from DC work: – – – – – Ohm’s Law Voltage Divider Current Divider Kirchoff’s Current Law Kirchoff’s Voltage Law • They are the same – but we use COMPLEX NUMBERS.