Download Lecture Notes EEE 360 - Warsaw University of Technology

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EEE 360
Energy Conversion and
Transport
George G. Karady & Keith Holbert
Chapter 7
Induction Motors
5/23/2017
360 Chapter 7 Induction Motor
1
Lecture 19
5/23/2017
360 Chapter 7 Induction Motor
2
Induction Motors
Operation Principle
•
•
•
•
The three-phase stator is supplied by balanced threephase voltage that drives an ac magnetizing current
through each phase winding.
The magnetizing current in each phase generates a
pulsating ac flux.
The total flux in the machine is the sum of the three
fluxes.
The summation of the three ac fluxes results in a
rotating flux, which turns with constant speed and
has constant amplitude.
5/23/2017
360 Chapter 7 Induction Motor
3
Induction Motors
Operation Principle
•
The rotating flux induces a voltage in the shortcircuited bars of the rotor. This voltage drives
current through the bars.
•
The induced voltage is proportional with the
difference of motor and synchronous speed.
Consequently the motor speed is less than the
synchronous speed
•
The interaction of the rotating flux and the rotor
current generates a force that drives the motor.
5/23/2017
360 Chapter 7 Induction Motor
4
7.3.2 Equivalent circuit
5/23/2017
360 Chapter 7 Induction Motor
5
Induction Motors
Xsta
Vsup
Rsta
Ista
Xrot_t
Rc
Xm
Vsta
Rrot_t
Irot_t
Stator
Rrot_t(1-s)/s
Rotor
Air gap
Figure 7.20 Final single-phase equivalent circuit of a three-phase
induction motor.
5/23/2017
360 Chapter 7 Induction Motor
6
7.3.3 Motor performance
5/23/2017
360 Chapter 7 Induction Motor
7
Induction Motors
• Figure 7.21 shows the energy balance in a motor.
• The supply power is:

Psup  Re(S sup )  Re 3 Vsup I
*
sta

• The power transferred through the air gap by the
magnetic coupling is the input power (Psup) minus the
stator copper loss and the magnetizing (stator iron)
loss.
•
The electrically developed power (Pdv) is the difference
between the air gap power (Pag) and rotor copper loss.
5/23/2017
360 Chapter 7 Induction Motor
8
Induction Motors
• The electrically developed power can be computed
from the power dissipated in the second term of rotor
resistance:
Pdv  3 I rot_t
2
1 s 

 Rrot _ t

s 

• The subtraction of the mechanical ventilation and
friction losses (Pmloss) from the developed power gives
the mechanical output power
Pout  Pdv  Pmloss
5/23/2017
360 Chapter 7 Induction Motor
9
Induction Motors
• The motor efficiency:
Pout

Psup
• Motor torque:
T
5/23/2017
Pout
m
360 Chapter 7 Induction Motor
10
Induction Motors
Air gap
Input power
Psup
Air gap
power Pag
Developed power
Pdv = 3 Irot2 Rrot (1-s)/s
Output power
Pout
Ventilation and
loss friction losses
Stator Iron loss Rotor Copper
3 Irot2 Rrot
3 Vsta2 / Rc
Stator Copper loss
3 Ista2 Rsta
Figure 7.21
5/23/2017
Motor energy balance flow diagram.
360 Chapter 7 Induction Motor
11
7.3.4 Motor performance
analysis
5/23/2017
360 Chapter 7 Induction Motor
12
Induction Motors
1) Motor impedance
( 1  s)
Zrot_t ( s )  j Xrot_t  Rrot_t  Rrot_t 
s
Zsta
Zrot_t(s)
j  Xm  Rc
Zm 
j  Xm  Rc
Zm  Zrot_t ( s )
Vsup
Ista
Im
Zm
Irot_t
Zmot ( s )  Zsta 
Zm  Zrot_t ( s )
Figure 7.22 Simplified motor
equivalent circuit.
5/23/2017
360 Chapter 7 Induction Motor
13
Induction Motors
1) Motor impedance
( 1  s)
Zrot_t ( s )  j Xrot_t  Rrot_t  Rrot_t 
s
j  Xm  Rc
Zm 
j  Xm  Rc
Zsta
Zrot_t(s)
Zsta  j Xsta  Rsta
Ista
Irot_t
Vsup
Im
Zm
Zm  Zrot_t ( s )
Zmot ( s )  Zsta 
Zm  Zrot_t ( s )
5/23/2017
Figure 7.22 Simplified motor
equivalent circuit.
360 Chapter 7 Induction Motor
14
Induction Motors
2) Motor Current
Zsta
Vsup 
Vmot
Ista ( s ) 
Vsup  254.034 V
3
Vsup
Vsup
Ista
Im
Zm
Irot_t
Zmot ( s )
Zm
Irot_t ( s )  Ista ( s ) 
Zm  Zrot_t ( s )
5/23/2017
Zrot_t(s)
Figure 7.22 Simplified motor
equivalent circuit.
360 Chapter 7 Induction Motor
15
Induction Motors
3) Motor Input Power

Ssup ( s)  3  Vsup Ista ( s)
Psup ( s)  Re Ssup ( s)

Pfsup ( s ) 
4)

Psup ( s )

Qsup ( s)  Im Ssup ( s)
Ssup ( s )

Motor Output Power and efficiency

Pdev ( s )  3  Irot_t ( s )

2
 Rrot_t 
( 1  s)
s
Pmech ( s)  Pdev ( s)  Pmech_loss
5/23/2017
360 Chapter 7 Induction Motor
 ( s ) 
Pmech ( s )
Psup ( s )
16
Induction Motors
s  0.1  %  0.2%  100  %
40
Pmax
Pmech( s )
30
hp
Pmotor
20
hp
10
Operating Point
0
0
20
smax
40
60
80
100
s
%
Figure 7.24 Mechanical output power versus slip.
5/23/2017
360 Chapter 7 Induction Motor
17
Induction Motors
5. Motor Speed
rpm 
1
f
nsy 
p
min
nsy  1800 rpm
2
nm ( s)  nsy ( 1  s)
m ( s)  2 nm ( s)
6. Motor Torque
Tm ( s ) 
5/23/2017
Pmech ( s )
m ( s )
360 Chapter 7 Induction Motor
18
Induction Motors
s  0.5%  0.6%  80%
200
150
Tm( s )
N m
100
50
0
0
20
40
60
80
s
%
Figure 7.26 Torque versus slip.
5/23/2017
360 Chapter 7 Induction Motor
19
Induction Motors
s  0.5%  0.6%  80%
200
175
Tmax
Tm( s ) 150
N m
Trated
N m
125
100
75
50
Operating Point
25
0
200
400
600
800
1000
1200
1400
n m( s )
rpm
1600
1800
nmax
Figure 7.26 Torque versus speed.
5/23/2017
360 Chapter 7 Induction Motor
20
Induction Motors
7.3.4.5.Motor Starting torque
• When the motor starts at s = 1,
• The ventilation losses are zero and the friction
loss is passive. The negative friction loss does not
drive the motor backwards.
• The mechanical losses are zero when s = 1
• This implies that the starting torque is calculated
from the developed power instead of the
mechanical output power.
5/23/2017
360 Chapter 7 Induction Motor
21
Induction Motors
7.3.4.5. Motor Starting torque
Tm_start ( s ) 
Tm_start ( s ) 
5/23/2017

3  Irot_t ( s )

2
 Rrot_t 
( 1  s)
s
2   nsy  ( 1  s )

3  Irot_t ( s )

2
Rrot_t

s
2   nsy
360 Chapter 7 Induction Motor
22
Induction Motors
• The resistances and reactance in the equivalent
circuit for an induction motor can be
determined by a series of measurements. The
measurements are:
– No-load test. This test determines the magnetizing
reactance and core loss resistance.
– Blocked-rotor test. This test gives the combined
value of the stator and rotor resistance and
reactance.
– Stator resistance measurement.
5/23/2017
360 Chapter 7 Induction Motor
23
Induction Motors
7.3.6.1.No-load test
• The motor shaft is free
• The rated voltage supplies the motor.
• In the case of a three-phase motor:
– the line-to-line voltages,
– line currents
– three-phase power using two wattmeters are
measured
5/23/2017
360 Chapter 7 Induction Motor
24
Induction Motors
7.3.6.1. No-load test
Xsta
Fig 7.29 Equivalent
motor circuit in noload test
Rsta
Ino_load
Vno_load
Rc
Xrot_t
Xm
Rrot_t
Irot_t= small
Vsta
Rrot_t(1-s)/s
s~0
Stator
Rotor
Air gap
Fig. 7.30 Simplified
equivalent motor
circuit in no-load test
5/23/2017
Ino_load
Vno_load_ln
360 Chapter 7 Induction Motor
Rc
Xm
25
Induction Motors
7.3.6.1.No-load test
2
Vno_load_ln 
Pno_load_A 
Vno_load_ln
RV

c no_load_ln
 120.089 V
Pno_load_A
Vno_load
3
Pno_load
Qno_load_A 
SPno_load_A95 V
I
Wno_load_ln no_load
no_load_A
3
2
2
Sno_load_A  Pno_load_A
2
Vno_load_ln
Xm 
Qno_load_A
5/23/2017
360 Chapter 7 Induction Motor
26
Induction Motors
7.3.6.2. Blocked-rotor test
• The rotor is blocked to prevent rotation
• The supply voltage is reduced until the motor current is
around the rated value.
• The motor is supplied by reduced voltage and reduced
frequency. The supply frequency is typically 15 Hz.
• In the case of a three-phase motor:
– the line-to-line voltages,
– line currents
– three-phase power using two wattmeters are measured
5/23/2017
360 Chapter 7 Induction Motor
27
Induction Motors
7.3.6.2. Blocked-Rotor test
Xsta
Figure 7.31 Equivalent
motor circuit for
blocked-rotor test
Vblocked
f = 15 Hz
Rsta
Iblocked
Rc
Xrot_t
Xm
Rrot_t
Irot_t
Vsta
Stator
Rotor
Air gap
Re = Rsta + Rrot_t
Figure 7.32 Simplified
equivalent motor circuit
for blocked-rotor test
Vblocked_ln
Xe = Xsta + Xrot_t
Iblocked
f = 15 Hz
5/23/2017
360 Chapter 7 Induction Motor
28
Induction Motors
7.3.6.2. Blocked-Rotor test
Vblocked_ln 
Pblocked_A 
Vblocked
Vblocked_ln
 21.939 V
Pblocked_A
3
Re 
2
Iblocked
Pblocked
Pblocked_A  160 W
3
The stator resistance was measured directly
Rrot_t  Re  Rsta
5/23/2017
360 Chapter 7 Induction Motor
29
Induction Motors
7.3.6.2. Blocked-Rotor test
The magnitude of the
motor impedance
The leakage reactance
at 15 Hz
The leakage reactance
at 60 Hz
5/23/2017
Zblocked 
Xe_15Hz 
Vblocked_ln
Iblocked
2
2
Zblocked  Re
60Hz
Xe  Xe_15Hz 
15Hz
360 Chapter 7 Induction Motor
30
Numerical Example
5/23/2017
360 Chapter 7 Induction Motor
31
Induction Motors
A three -phase 30hp, 208V, 4 pole, 60Hz, wye connected induction
motor was tested, the obtained results are:
No load test, 60 Hz
VnL  208V
PnL  1600W
InL  22A
Blocked Rotor test, 15Hz
Vbr  21V
Pbr  2100W
Ibr  71A
DC test
Vdc  12V
Idc  75A
Motor rating:
Pmot_rated  30hp
p  4
Vmot_ll  208V
fbr  15Hz
pfmot  0.8
f  60Hz
Calculate :
Calculate
a) The: equivalent circuit paramete rs
The equivalent
circuit
parameters
b)a)Motor
rated current
and
synchronous speed
b)
Motor
rated
current
and
synchronous speed
Draw the equivalent circuit
Draw the equivalent circuit
5/23/2017
360 Chapter 7 Induction Motor
32
Induction Motors
No load test , Determine the core losses Rc and magnetizing
reactance Xm
PnL_1F 
Single phase values:
Rc 
VnL_ln2
YnL 
InL
VnL_ln 
3
YnL  0.183 S
VnL_ln
1
2
YnL 
5/23/2017
3
VnL
Rc  27.04 
PnL_1F
Xm  i
PnL
 1 
R 
 c
2
Xm  5.573i 
360 Chapter 7 Induction Motor
33
Induction Motors
Block Rotor test,
Neglect the magnetizing branch. Consider only the Xsta+Xrot and
Rsta+ Rrot
Xbr
Xsta  Xrot
Single phase values:
Rbr
Rsta  Rrot
Pbr_1F 
Pbr
3
Vbr_ln 
Vbr
3
Resistance value is:
Rbr 
Pbr_1F
2
Rbr  0.139 
Ibr
5/23/2017
360 Chapter 7 Induction Motor
34
Induction Motors
Zbr 
Vbr_ln
Zbr  0.171 
Ibr
2
Xbr_15Hz  i Zbr  Rbr
2
Xbr_15Hz  0.099i 
The reactance at 60 Hz is:
Xbr_60Hz  Xbr_15Hz 
Xbr  i
60
Xbr_60Hz  0.398i 
15
 Z 2  R 2   60Hz
br 
 br
f
Xbr  0.398i 
br
5/23/2017
360 Chapter 7 Induction Motor
35
Induction Motors
Determination of R1 and R2 and X1 and X2
Xsta 
Xbr
2
Xrot  Xsta
Xsta  0.199i 
Y connected motor
Rsta 
Vdc
2Idc
Rsta  0.08 
5/23/2017
Rrot  Rbr  Rsta
Rrot  0.059 
360 Chapter 7 Induction Motor
36
Induction Motors
a) The equivalent circuit parameters
a) The equivalent circuit parameters
jX sta
jX rot
R sta
Ista
Irot
Vsup_ln
Rrot (1-s) / s
Im
Ic
Stator
R rot
Rc
jXm
Rotor
Air gap
5/23/2017
360 Chapter 7 Induction Motor
37
Induction Motors
C) Motor rated current and sy nchronous speed
Srated 
Pmot_rated
Srated  27.964 kV A
pfmot
Srated
Imot_rated 
n synch 
3 Vmot_ll
1
Imot_rated  77.62 A
rpm 
n synch  30 Hz
n synch  1800 rpm
min
f
p
2
5/23/2017
360 Chapter 7 Induction Motor
38
Related documents