Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Per-Unit System EE341 – Energy Conversion Ali Keyhani Transformer Lecture #3 1 Per-Unit System In the per-unit system, the voltages, currents, powers, impedances, and other electrical quantities are expressed on a per-unit basis by the equation: Quantity per unit = Actual value Base value of quantity It is customary to select two base quantities to define a given per-unit system. The ones usually selected are voltage and power. 2 Per-Unit System Assume: Vb Vrated Sb S rated Then compute base values for currents and impedances: Sb Ib Vb 2 b Vb V Zb Ib Sb 3 Per-Unit System And the per-unit system is: V p.u . Vactual Vb S p.u . S actual Sb Z % Z p.u . 100% I p.u . I actual Ib Z p.u . Z actual Zb Percent of base Z 4 Example 1 An electrical lamp is rated 120 volts, 500 watts. Compute the per-unit and percent impedance of the lamp. Give the p.u. equivalent circuit. Solution: (1) Compute lamp resistance V2 V2 (120) 2 P R 28.8 R P 500 power factor = 1.0 Z 28.80 5 Example 1 (2) Select base quantities Sb 500VA Vb 120V (3) Compute base impedance Vb2 (120) 2 Zb 28.8 Sb 500 (4) The per-unit impedance is: Z p.u . Z 28.80 10 p.u. Zb 28.8 6 Example 1 (5) Percent impedance: Z % 100% (6) Per-unit equivalent circuit: VS 10 p.u. Z 10 p.u. 7 Example 2 An electrical lamp is rated 120 volts, 500 watts. If the voltage applied across the lamp is twice the rated value, compute the current that flows through the lamp. Use the per-unit method. Solution: Vb 120V V p.u . V 240 20 p.u. Vb 120 Z p.u. 10 p.u. 8 Example 2 The per-unit equivalent circuit is as follows: VS 20 p.u. I p.u . V p.u . Z p.u . Z 10 p.u. 20 20 p.u. 10 Sb 500 Ib 4.167 A Vb 120 I actual I p.u . I b 20 4.167 8.3340 A 9 Per-unit System for 1- Circuits One-phase circuits Sb S1 V I where V Vlineto neutral I I linecurrent VbLV VLV VbHV VHV Sb VbLV Sb VbHV I bLV I bHV 10 Per-unit System for 1- Circuits Z bLV VbLV (VbLV ) 2 I bLV Sb Z bHV VbHV (VbHV ) 2 I bHV Sb S * S pu V pu I pu Sb P Ppu V pu I pu cos Sb Q Q pu V pu I pu sin Sb 11 Transformation Between Bases Selection 1 Then Sb1 S A Vb1 VA Vb21 Z b1 S b1 ZL Z pu1 Z b1 Selection 2 Sb 2 S B Then Zb2 2 b2 V Sb 2 Vb 2 VB Z pu 2 ZL Zb2 12 Transformation Between Bases Z pu 2 Z pu1 Z L Z b1 Z b1 Vb21 Sb 2 2 Z b 2 Z L Z b 2 Sb1 Vb 2 2 Z pu 2 Vb1 Sb 2 Z pu1 Vb 2 Sb1 “1” – old “2” - new 2 Z pu,new Vb,old Sb,new Z pu,old S V b,new b,old 13 Transformation Between Bases Generally per-unit values given to another base can be converted to new base by by the equations: Sbase1 ( P, Q, S ) pu _ on _ base_ 2 ( P, Q, S ) pu _ on _ base_1 Sbase2 V V pu _ on _ base_ 2 V pu _ on _ base_1 base1 Vbase2 ( R, X , Z ) pu _ on _ base_ 2 (Vbase1 ) 2 Sbase2 ( R, X , Z ) pu _ on _ base_1 (Vbase2 ) 2 Sbase1 When performing calculations in a power system, every per-unit value must be converted to the same base. 14 Per-unit System for 1- Transformer Consider the equivalent circuit of transformer referred to LV side and HV side shown below: RS XS j 2 2 a a RS jX S VLV VHV VLV N1 N2 Define S (1) Referred to LV side VHV VLV N1 a 1 VHV N 2 (2) Referred to HV side 15 Per-unit System for 1- Transformer Choose: Vb1 VLV ,rated Sb S rated Compute: Normal choose rated values as base values VHV 1 Vb 2 Vb1 Vb1 VLV a Vb21 Z b1 Sb Zb2 Vb22 Sb Z b1 Vb21 Vb21 2 a2 Z b 2 Vb 2 ( 1 V ) 2 b1 a 16 Per-unit System for 1- Transformer Per-unit impedances are: RS jX S Z p.u .1 Z b1 Z p.u .2 So: RS jX S RS jX S 2 2 2 2 RS jX S a a a a Z b1 Zb2 Z b1 a2 Z p.u .1 Z p.u .2 Per-unit equivalent circuits of transformer referred to LV side and HV side are identical !! 17 Per-unit Eq. Ckt for 1- Transformer RS jX S S a Z b1 N1 VLV Vb1 N2 VHV VLV N 1 1 VHV N 2 Vb 2 Fig 1. Eq Ckt referred to LV side Z S , pu Z S , pu Vb1 Vb 2 Vb 2 Vb1 1:1 Fig 2. Per-unit Eq Ckt referred to LV side Fig 3. Sb 18 Per-unit Eq. Ckt for 1- Transformer RS XS j 2 2 a a S a N1 Zb2 N2 Vb1 VLV VHV VLV N 1 1 VHV N 2 Vb 2 Fig 4. Eq Ckt referred to HV side Z S , pu Vb1 Z S , pu Vb 2 Vb 2 Vb1 1:1 Fig 5. Per-unit Eq Ckt referred to HV side Sb Fig 6. 19 Voltage Regulation Voltage regulation is defined as: VR Vnoload V fullload V fullload 100% In per-unit system: VR V pu,noload V pu, fullload V pu, fullload 100% Vfull-load: Desired load voltage at full load. It may be equal to, above, or below rated voltage Vno-load: The no load voltage when the primary voltage is the desired voltage in order the secondary voltage be at its desired value at full load 20 Voltage Regulation Example A single-phase transformer rated 200-kVA, 200/400-V, and 10% short circuit reactance. Compute the VR when the transformer is fully loaded at unity PF and rated voltage 400-V. Solution: Vb 2 400V Sb 200kVA Sload, pu 10 pu X S , pu j 0.1 pu VP j 0 .1 XS VS Sload Fig 7. Per-unit equivalent circuit 21 Voltage Regulation Example Rated voltage: VS , pu 1.00 pu * I load, pu Sload, pu 1.00 * 1.00 pu V 1.00 S , pu VP , pu VS , pu I pu X S , pu 1.00 1.00 j 0.1 1 j 0.1 1.0015.7 o pu 22 Voltage Regulation Example Secondary side: V pu, fullload VS , pu 1.00 pu Vpu,noload VP, pu 1.0015.7o pu Voltage regulation: VR V pu,noload V pu, fullload V pu, fullload 100% 1.001 1.0 100% 0.1% 1.0 23 Problem 1 j100 G 20 kV 22kV/220kV 80MVA 14% 220kV/20kV 50MVA 50MVA 0.8 PF 10% lagging Select Vbase in generator circuit and Sb=100MVA, compute p.u. equivalent circuit. 24 Per-unit System for 3- Circuits Three-phase circuits Sb S3 3S1 3V I where V Vlinetoneutral VL (line) / 3 I I linecurrent I L Sb 3VL I L VbLV VL , LV VbHV VL , HV Sb 3VbLV I bLV 3VbHV I bHV 25 Per-unit System for 3- Circuits Sb 3VbLV I bLV Z bLV Z bHV S pu VLV ILV VbLV 3 I bHV Sb 3VbHV 3VbLV (VbLV ) 2 Sb Sb (VbHV ) 2 Sb 3VL I L* V pu I *pu Sb 3Vb I b S3 26 Per-unit System for 3- Transformer Three 25-kVA, 34500/277-V transformers connected in -Y. Short-circuit test on high voltage side: VLine, SC 2010V I Line, SC 1.26 A P3 , SC 912W Determine the per-unit equivalent circuit of the transformer. 27 Per-unit System for 3- Transformer (a) Using Y-equivalent I SC 1.26 VSC RS jX S 2010 3 Sb 25000VA 34500 277 3 2010 1160.47V 3 1160.47 921.00 1.26 VSC Z SC 28 Per-unit System for 3- Transformer 912 P 304W 3 XS RS P 2 I SC 304 191.48 2 1.26 Z SC RS2 9212 191.482 900.86 2 So Z SC 191.48 j900.86 Sb 25000VA Z b,HV Vb, HV 34500 19918.58V 3 19918.582 15869.99 25000 Z SC , pu ,Y 191.48 j 900.86 0.012 j 0.0568 pu 15869.99 29 Per-unit System for 3- Transformer (b) Using -equivalent I SC 1.26 3 Z SC , Sb 25000VA VSC 2010 34500 277 VSC 2010V Z SC , I SC 1.26 0.727 A 3 2010 2764.79 0.727 30 Per-unit System for 3- Transformer 912 P 304W 3 RS , P 2 I SC 304 575.18 2 0.727 2 X S , Z SC , RS2, 2764.79 2 575.182 2704.30 So Z SC 191.48 j900.86 Sb 25000VA Z b,HV Z SC , pu, Vb , HV 34500V 345002 47610 25000 575.18 j1704.30 0.012 j 0.0568 pu 47610 31 Related Materials in Textbook (1) Section 2.6 and 2.7, page 83~90, Chapman book (2) Section 2.10, page 113~116, Chapman book 32