Download 在順偏壓區

Document related concepts

Valve RF amplifier wikipedia , lookup

Nanogenerator wikipedia , lookup

TRIAC wikipedia , lookup

Multimeter wikipedia , lookup

Thermal runaway wikipedia , lookup

Operational amplifier wikipedia , lookup

Negative resistance wikipedia , lookup

CMOS wikipedia , lookup

Power electronics wikipedia , lookup

Schmitt trigger wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Ohm's law wikipedia , lookup

Voltage regulator wikipedia , lookup

Current source wikipedia , lookup

Nanofluidic circuitry wikipedia , lookup

Current mirror wikipedia , lookup

Rectiverter wikipedia , lookup

Power MOSFET wikipedia , lookup

Surge protector wikipedia , lookup

Laser diode wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
Chapter 1:
Semiconductor Diodes
1
圖 1.1
第一個積體電路是由Jack S. Kilby在西元1958年所發明的相位移振盪器。 (感謝德州儀器.)
圖 1.2
計算機晶片 (© Stock Photo/ CORBIS.提供)
Diodes
A diode is a 2-terminal device.
A diode ideally conducts
current in only one direction.
二極體是一種雙端的裝置。
二極體理想的導通電流只有某
一方向。
4
Diodes
Conduction Region
導通區
Non-Conduction Region
非導通區
•
•
•
•
•
•
•
The voltage across the diode is 0V
The current is infinite
The forward resistance is defined as
RF = VF / IF
The diode acts like a short.
•
All of the voltage is across the diode
The current is 0A
The reverse resistance is defined as
RR = VR / IR
The diode acts like open.
•
•
•
•
二極體上之電壓降是0V。
電流是無限的。
順向的電阻是定義為RF = VF / IF 。
二極體的動作像是一短路。
•
•
•
•
所有的電壓是在二極體上。
電流是0A。
逆向的電阻是定義為RR = VR / IR。
二極體的動作像是一開路。
5
Semiconductor Materials
Common materials used in the development of semiconductor
devices:
•
•
Silicon (Si)
Germanium (Ge)
半導體裝置研發所使用的常用材料有:
•
•
矽 (Si)
鍺(Ge)
6
圖 1.3
原子結構: (a) 矽; (b) 鍺; 和 (c) 鎵和砷.
圖 1.4
矽原子的共價鏈。
圖 1.5
砷化鎵晶體的共價鏈。
圖1.6
能量階: (a) 隔離原子結構中的個別能階。
圖 1.6 能量階: (b) 絕緣體、半導體與導體的傳導帶與價電帶。
Doping
The electrical characteristics of silicon and germanium are improved by
adding materials in a process called doping.
矽與鍺的電器特性是以加入材料來改進特性,這種過程稱為摻雜。
There are just two types of doped semiconductor materials:
摻雜的半導體材料有兩種型式:
•
•
n-type
p-type
•
•
n-型
p-型
•
•
n-type materials make the silicon (or germanium) atoms more negative
p-type materials make the silicon (or germanium) atoms more positive
•
•
n-型材料是使矽(或鍺) 原子較負電性。
p-型材料是使矽(或鍺) 原子較正電性。
12
圖 1.7
n-型材料中的銻雜質。
圖 1.9
p-型材料中的硼雜質。
圖 1.10
電子、電洞流。
.
圖 1.11
(a) n-型材料; (b) p-型材料。
p-n Junction
One end of a silicon or germanium crystal can be doped as a p-type
material and the other end as an n-type material.
The result is a p-n junction.
矽或鍺晶體的一端可以摻雜成為 p-型材料而另一端則摻雜成為n-型材
料。
這結果就是p-n接面。
17
p-n Junction
At the p-n junction, the negatively
charged atoms of the n-type side
are attracted to the positively
charged atoms of the p-type side.
在 p-n 接面上, n-型邊的負電性電
荷原子是會吸引 p-型邊的正電性
原子。
The electrons in the n-type
material migrate across the
junction to the p-type material
(electron flow).
The result is the formation of a
depletion region around the
junction.
綜合結果就是在接面附近構成了空
乏區。
在n-型材料中的電子會移動越過
接面到p-型材料中(電子流)。
Or you could say the ‘holes’ in the
p-type material migrate across
the junction to the n-type
material (conventional current
flow).
或者你可以說在p-型材料中的“
電洞”越過接面到n-型材料中(傳
統的電流)。
18
Diode Operating Conditions
A diode has three operating conditions:
•
•
•
No bias
Forward bias
Reverse bias
二極體有三種操作情形:
•
•
•
無偏壓
順偏壓
逆偏壓
19
Diode Operating Conditions
No Bias
•
•
•
No external voltage is applied: VD = 0V
No current is flowing: ID = 0A
Only a modest depletion layer exists
無偏壓狀態
•
•
•
無外加的電壓: VD = 0V
無電流流動: ID = 0A
只有適度的空乏層存在
20
Diode Operating Conditions
Reverse Bias
逆偏壓狀態
External voltage is applied across the p-n junction in
the opposite polarity of the p- and n-type materials.
外加的電壓是加在 p-n 接面的 p- 與 n-型材料之相反
的極性上。
•
•
•
•
•
在 p-型材料中的電洞會被吸引朝向
負端。
•
21
The reverse voltage causes the
depletion layer to widen.
逆向電壓會產生較寬的空乏層。
The electrons in the n-type material
are attracted toward the positive
terminal.
在 n-型材料中的電子會被吸引朝向
正端。
The holes in the p-type material are
attracted toward the negative
terminal.
Diode Operating Conditions
Forward Bias
順偏壓狀態
External voltage is applied across the p-n junction in
the same polarity as the p- and n-type materials.
外加的電壓是加在 p-n接面的p- 與 n-型材料之相同
極性上。
• The forward voltage causes the depletion
layer to narrow.
• 順向電壓會產生較窄的空乏層。
• The electrons and holes are pushed
toward the p-n junction.
• 電子與電洞會被推向 p-n 接面。
• The electrons and holes have sufficient
energy to cross the p-n junction.
• 電子與電洞有足夠的能量越過 p-n 接面。
22
Shockley’s equation
I D  I S (eVD / nVT  1)
# Problem 15, p.56
• Is : reverse saturation current
• VD : applied forward-bias voltage across the diode
• n : an ideality factor (1<n<2)
• VT : thermal voltage
kT
VT 
q
 k : Boltzmann’s constant = 1.38 ×10-23 J/K
 T : absolute temperature : T (k) = 273 + ℃
 q : electronic charge = 1.6 ×10-19 C
23
Ex. 1.1
At a temperature of 27 ℃, determine the thermal voltage VT 。
kT
VT 
q
 k : Boltzmann’s constant = 1.38 ×10-23 J/K
 T : absolute temperature : T (k) = 273 + ℃
 q : electronic charge = 1.6 ×10-19 C
T  273  27  300K
kT (1.38 1023 )(300)
VT 

q
1.6 1019
= 0.025875 V = 25.875 mV ≒26 mV
24
Actual Diode Characteristics
Note the regions for no
bias, reverse bias, and
forward bias conditions.
注意到在無偏壓、逆偏
壓與順偏壓的情形。
Carefully note the scale
for each of these
conditions.
仔細而注意到每一種情
形的比例尺度。
25
Majority and Minority Carriers
Two sets of currents flow in a diode:
流進二極體中電流的兩種型態:
Majority Carriers 多數載子
•
•
•
•
The majority carriers in n-type materials are electrons.
在 n-型材料中的多數載子是電子。
The majority carriers in p-type materials are holes.
在 p-型材料中的多數載子是電洞。
Minority Carriers
•
•
•
•
少數載子
The minority carriers in n-type materials are holes.
在n-型材料中的少數載子是電洞。
The minority carriers in p-type materials are electrons.
在p-型材料中的少數載子是電子。
26
Zener Region
The Zener region is in the diode’s
reverse-bias region.
At some point the reverse bias voltage
is so large the diode breaks down and
the reverse current increases
dramatically.
曾納區就是在二極體的逆偏壓區。
在如此大電壓的逆電壓相同地點下,
會使二極體崩潰與逆向電流戲劇性地
增加。
•
•
This maximum voltage is called
avalanche breakdown voltage
The current is called avalanche current.
•
•
This 這種最大的電壓稱為突崩潰電壓。
The 電流則稱為突崩電流。
27
Forward Bias Voltage
The point at which the diode changes from no-bias condition to
forward-bias condition occurs when the electrons and holes are
given sufficient energy to cross the p-n junction. This energy comes
from the external voltage applied across the diode.
在二極體改變自無偏壓情形而成為順偏壓情形之關鍵處,是發生
在施給電子與電洞有足夠能量可越過 p-n 接面。這種能量是來自
加在二極體上的外加電壓。
The forward bias voltage required for a:
•
•
silicon diode  0.7V
germanium diode  0.3V
順偏壓電壓要求是:
•
•
矽二極體  0.7V
鍺二極體  0.3V
28
Temperature Effects
•
As temperature increases it adds energy to the diode.
•
It reduces the required forward bias voltage for forward-bias
conduction.
•
It increases the amount of reverse current in the reverse-bias
condition.
•
It increases maximum reverse bias avalanche voltage.
•
Germanium diodes are more sensitive to temperature variations
than silicon diodes.
•
只要溫度增加就會使二極體能量增加。
•
對順偏壓情情況下的順偏壓電壓要求會減少。
•
在逆偏壓情況下會增加逆向電流量。
•
會增加最大逆偏壓之突崩電壓。
•
鍺二極體要比矽二極體有較靈敏的溫度變化。
29
Resistance Levels
Semiconductors act differently to DC and AC currents.
There are three types of resistances:
• DC, or static resistance
• AC, or dynamic resistance
• Average AC resistance
半導體對直流與交流電流有不同地動作狀態。
有三種型式的電阻:
• 直流或靜態電阻
• 交流或動態電阻
• 平均交流電阻
30
DC, or Static, Resistance
For a specific applied DC voltage VD,
the diode has a specific current ID,
and a specific resistance RD.
在指定的外加直流電壓VD於二極體
上會有一特定之電流 ID, 以及特定的
電阻 RD。
RD 
VD
ID
31
Ex. 1.2
Determine the dc resistance level for the diode at
(1)ID = 2 mA
(2)ID = 20 mA
(3)VD = -10 V
RD 
32
VD
ID
AC, or Dynamic, Resistance
In the forward bias region:(在順偏壓區)
rd 
26 mV
 rB
ID
•
The resistance depends on the amount of current (ID) in the diode.
•
The voltage across the diode is fairly constant (26mV for 25C).
•
rB ranges from a typical 0.1 for high power devices to 2 for low
power, general purpose diodes. In some cases rB can be ignored.
•
電阻要視二極體上之電流 (ID) 量而定。
•
二極體的電壓降相當地固定 (26mV for 25C)。
•
rB 範圍在高功率裝置之典型值自 0.1 到低功率與一般功能二極體
的2, 在某些狀況下的 rB 可以忽略。
In the reverse bias region:
在逆偏壓區:
rd  
The resistance is essentially infinite. The diode acts like an open.
電阻在本質上是無限的,二極體動作像是開路。
33
Average AC Resistance
rav 
Vd
(point to point)
I d
AC resistance can be
determined by selecting two
points on the characteristic
curve developed for a
particular circuit.
交流電阻可以在一特定電路的
特性曲線上選取兩點來計算決
定。
34
Diode Specification Sheets (二極體特性表)
Data about a diode is presented uniformly for many different diodes. This
makes cross-matching of diodes for replacement or design easier.
二極體數據資料是代表許多不同二極體的一致性。這使得二極體在取代或
設計上的交叉配對更容易些。
1. VF (順向偏壓) , forward voltage at a specific current and temperature
2. IF (最大順向電流) , maximum forward current at a specific temperature
3. IR (最大逆向電流), maximum reverse current at a specific temperature
4. PIV or PRV or V(BR) (最大逆向電壓), maximum reverse voltage at a specific
temperature
5. Power dissipation (功率消耗) , maximum power dissipated at a specific
temperature
6. C(電容大小), capacitance levels in reverse bias
7. trr (逆向恢復時間) , reverse recovery time
8. Temperatures (溫度) , operating and storage temperature ranges
35
Diode Capacitance
In reverse bias, the depletion layer is very large. The diode’s strong positive and
negative polarities create capacitance, CT. The amount of capacitance depends
on the reverse voltage applied.
在逆偏壓下的空乏層是非常大,二極體的強大正極性與負極性所產生的電容CT,
這電容量要視外加的逆向電壓而定。
In forward bias storage capacitance or diffusion capacitance (CD) exists as the
diode voltage increases.
在順偏壓下存在的儲存電容或擴散電容 (CD) 是隨著二極體電壓增加而增加。
36
Reverse Recovery Time (trr)
Reverse recovery time is the amount of time it takes for the diode to stop
conducting once the diode is switched from forward bias to reverse bias.
逆向恢復時間是對二極體自順偏壓轉換到逆偏壓時,到達停止導電的時間
量。
37
Diode Symbol and Packaging
陽極縮寫為 A
陰極縮寫為 K
The anode is abbreviated A
The cathode is abbreviated K
38
Diode Testing
•
•
•
Diode checker
Ohmmeter
Curve tracer
•
•
•
二極體檢測器
歐姆表
曲線循跡器
39
Diode Checker
Many digital multimeters have a diode checking function.
The diode should be tested out of circuit.
A normal diode will exhibit its forward bias voltage:
許多數位電表有二極體的檢測功能,該二極體必須取出電路來測試。
正常的二極體會顯示其順偏壓電壓:
•
•
•
•
Silicon diode  0.7V
Germanium diode  0.3V
矽二極體  0.7V
鍺二極體  0.3V
40
Ohmmeter
An ohmmeter set on a low Ohms scale can be used to test a diode.
The diode should be tested out of circuit.
歐姆表設置在低歐姆刻度而用來測試二極體,二極體必須取出於
電路來測試。
41
Curve Tracer
A curve tracer is a specialized type of test equipment. It displays the
characteristic curve of the diode in the test circuit. This curve can be
compared to the specifications of the diode from a data sheet.
曲線循跡器是一種特殊方式的測試設備,它顯示在測試電路上的二
極體特性曲線,這種曲線可以作為資料表上二極體特性的比較。
42
Other Types of Diodes
•
•
•
Zener diode
Light-emitting diode
Diode arrays
43
•
•
•
曾納二極體
發光二極體
二極體陣列
Zener Diode
A Zener is a diode operated in reverse bias at the
Zener voltage (VZ).
Common Zener voltages are beween 1.8 V and
200 V
曾納二極體操作在曾納電壓 (VZ)的逆偏壓區。
通常曾納電壓是在 1.8 V 與 200 V之間。
44
Light-Emitting Diode (LED)
An LED emits photons when it is forward biased.
These can be in the infrared or visible spectrum.
The forward bias voltage is usually in the range of 2 V to 3 V.
當LED在順偏壓 時發射光子,這些光子可以是紅外線或是可見光譜。
順偏壓的電壓範圍通常是在 2 V 到 3 V。
45
Diode Arrays
Multiple diodes can be
packaged together in an
integrated circuit (IC).
Common Anode
多個二極體可以在積體電
路 (IC)中包裝在一起。
Common Cathode
A variety of combinations
exist.
存在有多種組合變化。
46
圖 1.38
半導體二極體的符號。
圖 1.39
不同型式的接面二極體。 [(a) 為摩托羅拉公司所提供.; (b) 和(c) 為國際整流器公司所提供。]
圖 1.40
帶有二極體測試功能的數位電表。 (計算機技術公司提供.)
圖 1.41
檢驗二極體在順偏的狀態。
圖 1.42
用歐姆表檢查二極體。
圖 1.43
曲線尋跡器 (德州儀器公司提供)
圖 1.44
IN4007 矽質二極體的曲線軌跡響應。
圖 1.45
回顧曾納區。
圖 1.46
傳導方向: (a) 曾納二極體; (b) 半導體二極體; (c) 電阻元件。
圖 1.49
曾納二極體的端點識別和記號。
HW1
p. 56, Problem #:
 15
 25
 26
Problem 15
I D  I S (eVD / nVT  1)
Problem 25 & 26
Problem 25
Problem 26