Download Slide 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
‫משרד החינוך והמזכירות הפדגוגית‬
‫האגף לתכנון ופיתוח תכניות לימודים‬
‫האוניברסיטה העברית בירושלים‬
‫המרכז להוראת המדעים‬
‫מנהלת מל"ם‬
‫המרכז הישראלי לחינוך מדעי‬
‫טכנולוגי ע"ש עמוס דה שליט‬
‫המרכז הארצי‬
‫למורי הביולוגיה‬
‫המרכז הארצי של מורי הביולוגיה ומורי מדעי הסביבה בשיתוף עמותת בשער‬
‫שימוש בביופחם‬
‫והשפעתו על צמחים‬
‫פרופ' יגאל אלעד‪ ,‬המחלקה לפתולוגיה של‬
‫צמחים וחקר העשבים‪ ,‬מכון וולקני‬
‫מתנדב בעמותת "בשער"‬
‫‪16.12.12‬‬
Climate Change
Since the industrial revolution, atmospheric levels of greenhouse gases have been
rising, mainly due to burning of fossil fuels. With them, mean global temperatures have
been rising.
Application of biochar to soil results in long term
sequestration of fixed carbon
•Biochar use agricultural plants
Soil fertility
2006
Biochar applied once in 2003
Colombian Llanos
(N=3)
Major, J., M. Rondon, D. Molina, S.J. Riha and J. Lehmann, 2010.
Maize yield and nutrition during 4 years after biochar application to a
Colombian savanna oxisol. Plant and Soil 333, 117-128.
Value of soil application of Biochar
Increases soil fertility
nutrient

retention
water holding capacity
cation
exchange capacity
Increases beneficial soil microorganisms
Reduces nutrient runoff, absorbs ammonia and
ammonium
Absorbs pesticides and soil toxins
Reduces agricultural N2O and CH4 emissions
6
Pepper
growth
0
3
5
240
200
Biochar (%)
0
1
a
3
a
b
b
160
120
65 70 75 80 85
Time after planting (days)
Fruit weight
(g/plant)
Fruit weight
(g/fruit)
440 ± 21 b 83 ± 7 b
565 ± 36 b 97 ± 5 a
732 ± 58 a 104 ± 4 a
Graber et al. 2010, Plant and Soil
Pepper canopy
dry weight (g)
BIOCHAR
(%)
Normalized pepper
leaf area (%)
Plant growth promotion
under optimal fertigation
a
19
17
b
c
151
0
0
3
5
Biochar Content (%)
Normalized tomato
plant height (%)
600
a
400
a
200
b
a
a
b
b
b Biochar (%)
0
1
3
35 45 55 65
Time after planting (days)
Graber et al. 2010, Plant and Soil
Normalized tomato
leaflet area (%)
Tomato growth
300 Biochar (%)
0
1
3
200
a
a
ab
ab
b
b
a
ab
b
100
45
55
65
Time after planting (days)
‫נביטת חיטה‬
Germination (%)
100
75
50
25
0
1
0
0
4
8 12
Time after planting (days)
Height (cm)
60
40
20
1 % GHW
0
0
0
10 20 30
Time after planting (days)
Biochar
Increases soil fertility: nutrient retention, water
holding capacity, cation exchange capacity
Increases beneficial soil microorganisms
Reduces nutrient runoff
Absorbs pesticides and soil toxins
Reduces agricultural N2O and CH4 emissions
Biochar has a beneficial effect on plants also on the
background of full fertilization
What other
effects?
Disease severity (% leaf coverage)
20
a
10
0
0
a
0
3
2
4
b
b
6
20
10
Effect of soil biochar application
on leaf gray mold disease
8
Result:
Suppression of gray
mold on tomato and
sweet pepper leaves
a
a
a
0 b
b
b
3
0
0
2
4
6
Time after infection (days)
Biochar AUDPC±SE
(%) (%*days)
0 42.3±8.3 a
3 10.5±3.8 b
Elad et al, Phytopathology 2010
Citrus wood biochar
Effect of soil biochar application
on tomato leaf powdery mildew
100
75
Upper leaves
Biochar
(%)
Disease severity (% leaf coverage)
50
25
0
15
a
b
30
45
60
0
1
3
AUDPC±SE
(%*days)
269±19 a
57±10
10± 3
)Leveillula taurica(
b
b
100
75
a
Middle leaves
50
25
0
15
100
b
30
45
a
a
b
b
60
Lower leaves
75
0 1419±173 a
1 164± 39 b
3 106± 22 b
50
25
0
15
0 801±74
1 112±24
3 70±16
b
30
45
Citrus wood biochar
60
Time after infection (days)
Elad et al, Phytopathology 2010
Effect of soil biochar application
on pepper leaf powdery mildew
b
Leaf height
Upper
a
b
Middle
a
Lower b
0
Elad et al., 2010 Phytopathology
a
Biochar
(%)
0
5
10
20
Disease severity (% leaf coverage)
Result:
Suppression of powdery mildew on
tomato and sweet pepper leaves
b
40
a b
20
b
a
1
3
Biochar
concentration
in soil (%)
Disease severity
(% leaf coverage)
Long term effect of soil application on leaf powdery mildew
80
a 0
60
a
b
0
Biochar
concentration
in soil (%)
30
55
80
105
Time after infection (days)
3
b
1
b
a
0
0
600
Disease severity
Elad et al, Phytopathology 2010
1200
1800
AUDPC (%*days)
Biochar
concentration
in soil (%)
Broad Mite in Pepper
5
b
b
3
0
a
0
5
10
15
Severity (%)
20
Control
No biochar
Elad et al, Phytopathology 2010
3% biochar
)Polyphagotarsonemus latus( ‫אקרית העיוותים‬
Effect of parameters of biochar treatment :
Biomass
Biochar
source
concentration
-------------Time after
Pyrolysis
Plants age infection by
temperature Disease (time after pathogen
assay
biochar
(days)
treatment)
Biochar concentration (%)
Effect of biochar treatment parameters:
Pyrolysis
temp. C
Greenhouse waste
(GHW)
3.0
1.0
0.5
3.0
1.0
0.5
-
b
b
c
a
GHW
a
0
20
40
Disease severity )%(
Elad et al, Phytopathologia Mediterranea (2012)
60
Plants
age Time after infection
(d.a.p) by Botrytis cinerea
Assay
(days)
350
AL
29
12
450
AL
72
14
Pyrolysis
temp. C
Biochar concentration (%)
Olive pomice (OP)
3.0
1.0
0.5
0
b
20
3.0
1.0
0.5
0
40
OP
a
10
20
b
10
DL
23
7
450
DL
16
10
450
AL
21
5
30
ab
5
350
60
b
3.0
1.0
0.5
0
OP
a
Plants
age Time after infection
(d.a.p) by Botrytis cinerea
Assay
(days)
15
Disease severity )%(
Elad et al, Phytopathologia Mediterranea (2012)
OP
a
Biochar concentration (%)
Pyrolysis
temp. C
b
3.0
1.0
0.5
-
c
(EW)
ab
a
Eucalyptus wood (EW)
3.0
1.0
0.5
-
b
0
20
Plants
age Time after infection
(d.a.p) by Botrytis cinerea
Assay
(days)
350
DL
23
7
350
AL
47
10
a
40
60
Disease severity )%(
Results:
Suppression of foliar diseases in all cases
Efficacy may differ with the biochar (temperature and biomass source)
Three weeks of incubation are needed
•Plant pathogens infect foliar plant parts
•Biochar applied to soil (root zone)
Induced resistance (systemic)
What plant genes may be responsible for the
effect of biochar on plant diseases?
Systemic resistance pathways
PRs
WRKY (FaWRKY1)Transcription factors
WRKY
involved in plant responses
to biotic and abiotic stresses
PR1
PR1 (FaPR1)
SA dependent
related marker
PR5
PR5 (Faolp2)
Osmotin-Like
(down regulated by
ABA, induced by
SA and wounding)
PR10
Priming for defenses
Necrotrphs
Biotrphs
(Fra a3)
induced under
stress and act as
common allergens
BIOCHAR ?
LOX
Lox (Falox)
Lipoxygenase,
central in JA
signaling,
involved in ISR
QPCR ‫מדידת כמות יחסית על ידי‬
Control
Extraction total RNA
Reverse Transcriptase
Treatment
cDNA
QPCR
Normalisation with house keeping gene (GAPDH)
Relative quantification/control plant
Relative mRNA level (Fold Change)
Effect of biochar amendments on expression of defense
related genes in strawberry plants
210
Greenhouse waste
(3 wks)
A
Biochar
conc. (%)
0
1
3
180
150
15
160
110
15
10
5
5
FaPR1
a3 Falox
PR1 Faolp2
PR5 Fra
PR10
Lox FaWRKY1
WRKY
SAR
ISR
Citrus wood
9 mths
135
10
0
B
0
a3 Falox
FaPR1
PR1 Faolp2
PR5 Fra
PR10
Lox FaWRKY1
WRKY
SAR
ISR
Total RNA was isolated from leaves and subjected to qPCR analysis.
Transcripts levels were normalized to FaGAPDH and 18-26S interspacer RNA genes and expressed relative to no biochar
amendment plants using the Δ Δ Ct Ct method.
Meller Harel et al, 2011
Enhanced resistance to Gray mold
in strawberry plants grown on biochar
Biochar, conc. (%) AUDPC ±SE
415.8±
157.1±
110.0±
117.8±
Disease severity
(rot area, mm2)
0
Greenhouse waste (GHW) 1
GHW 3
Citrus wood (CW) 3
50
ba
0
0
4
a
b b
7
9
Time after inoculation (days)
Meller Harel et al, 2011
a
b
b
b
a
B. cinerea
100
50.5
33.0
32.0
24.3
after 9 days:
Relative mRNA level (Fold Change)
Effect of Botrytis cinerea infection on expression of defense related genes
(3 weeks GHW biochar + 7 days post inoculation)
150
Botrytis cinerea
+
40
30
100
20
Biochar conc. (%)
1
1
3
3
B. cinerea
+
+
50
10
0
FaPR1 Faolp2
a3 Falox
PR1
PR5 Fra
PR10
Lox FaWRKY1
WRKY
SAR
Meller Harel et al, 2011
ISR
0
FaPR1
Fra a3 Falox
PR1 Faolp2
PR5 PR10
Lox FaWRKY1
WRKY
SAR
ISR
Enhanced resistance to Powdery mildew
in strawberry plants grown on biochar
Biochar,
conc. (%) AUDPC ±SE
0
Citrus wood (CW) 1
CW 3
-
80
Disease severity
(% leaf coverage)
1373.4± 84.1 a
1129.7±181.2 a
720.4± 87.7 b
-
a
P. aphanis
a b
40
a
a
0
10
b
b
b
0
20
No biochar
30
40
Time after infection (days)
Meller Harel et al, 2011
after 28 days:
3% CW
Relative mRNA level (Fold Change)
Effect of Podosphaera aphanis infection on expression of defense related genes
(9 momths with biochar + 28 days after inoculation)
Podosphaera
aphanis
+
100
85
Biochar P.
conc. (%) aphanis
160
135
1
1
3
3
110
60
+
+
70
10
30
5
0
FaPR1
Fra a3 Falox
PR1 Faolp2
PR5 PR10
Lox FaWRKY1
WRKY
SAR
ISR
0
FaPR1
PR1
Faolp2
Fra a3 Falox
PR5 PR10
Lox FaWRKY1
WRKY
SAR
Meller Harel et al, 2011
ISR
Systemic resistance pathways
BIOCHAR
‫•נקבוביות הביופחם משמשת מקלט למקרואורגניזמים ייחודיים‬
‫•חומרים המצויים בביופחם מעודדים מקרואורגניזמים מסויימים‬
‫ומעכבים אחרים‬
Stimulation of beneficial soil microbial consortium
General
bacteria
Rhizosphere
Growth
medium
1*107
1*108
3
1
0
1*109
Rhizosphere
Biochar
conc.)%(
Bacillus spp.
Growth
medium
1
10
100
1,000
Rhizosphere
Trichoderma spp.
Growth
medium
1
1*102
Population (CFU/g)
1*104
oBiochar improves plants growth.
oBiochar induces in plants resistance towards
pathogens.
oChanges in microbial populations.
oBiochar-borne chemicals and/or biochar-induced
microbial populations are responsible for these
activities.
Research in cooperation with
Institute of Plant Protection
Yigal Elad
Omer Frenkel
Yael Meller-Harel
Dalia Rav David
Menahem Borenshtein
Ran Shulchani
Sergey Segal
Amit Kumar Jaiswal
Zeraye Mehari Haile
Institute of Soil, Water
and Environmental Sciences
Ellen R. Graber
Eddie Cytryn
Max Kolton
Avner Silber
Larissa Kautsky
Maya Ofek
Dror Minz
Hebrew University
Faculty of Agriculture
Inst. of Agricultural Engineering
Zohar Pasternak
Beni Lew
http://www.agri.gov.il/pages/788.aspx
Cited publications
•Elad, Y., Rav David, D., Meller Harel, Y., Borenshtein, M., Ben Kalifa, H., Silber, A. and Graber, E.R. (2010) Induction of systemic
resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913-921.
•Graber, E.R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., Tsechansky, L., Borenshtein, M., Elad, Y. (2010)
Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil 337:481–
496.
•Kolton, M., Meller Harel, Y., Pasternak, Z., Graber, E.R., Elad, Y. and Cytryn, E. (2011) Impact of biochar application to soil on the
root-associated bacterial community structure of fully developed greenhouse pepper plants. Applied and Environmental Microbiology
77:4924-4930.
•Elad, Y., Cytryn, E., Meller Harel, Y., Lew, B., and Graber, E.R. (2011) The Biochar Effect: plant resistance to biotic stresses.
Phytopathologia Mediterrenea 50: 335−349.
Related documents