Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Presentation Slides for Chapter 18 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] April 1, 2005 Cloud Formation Altitude range (km) of different cloud-formation étages Étage High Middle Low Polar 3-8 2-4 0-2 Temperate 5-13 2-7 0-2 Tropical 6-9 2-8 0-2 Table 18.1 Fog Cloud touching the ground Radiation Fog Forms as the ground cools radiatively at night, cooling the air above it to below the dew point. Advection Fog Forms when warm, moist air moves over a colder surface and cools to below the dew point. Upslope Fog Forms when warm, moist air flows up a slope, expands, and cools to below the dew point. Fog Evaporation Fog Forms when water evaporates in warm, moist air, then mixes with cooler, drier air and re-condenses. Steam Fog Occurs when warm surface water evaporates, rises into cooler air, and recondenses, giving the appearance of rising steam. Frontal Fog Occurs when water from warm raindrops evaporates as the drops fall into a cold air mass. The water then recondenses to form a fog. Warm over cold air appears ahead of an approaching surface front. Cloud Classification Low clouds (0-2 km) stratus Stratus (St) cumulus Stratocumulus (Sc) cirrus Nimbostratus (Ns) nimbus Middle clouds (2-7 km) Altostratus (As) Altocumulus (Ac) High clouds (5-18 km) Cirrus (Ci) Cirrostratus (Cs) Cirrocumulus (Cc) Clouds of vertical development (0-18 km) Cumulus (Cu) Cumulonimbus (Cb) = "layer" = "clumpy" = "wispy" = "rain" Low Clouds Stratus A low, gray uniform cloud layer composed of water droplets that often produces drizzle. Stratocumulus Low, lumpy, rounded clouds with blue sky between them. Nimbostratus Dark, gray clouds associated with continuous precipitation. Not accompanied by lightning, thunder, or hail. Middle Clouds Altostratus Layers of uniform gray clouds composed of water droplets and ice crystals. The sun or moon is dimly visible in thinner regions. Altocumulus Patches of wavy, rounded rolls, made of water droplets and ice crystals. High Clouds Cirrus High, thin, featherlike, wispy, ice crystal clouds. Cirrostratus High, thin, sheet-like, ice crystal clouds that often cover the sky and cause a halo to appear around the sun or moon. Cirrocumulus High, puffy, rounded, ice crystal clouds that often form in ripples. Clouds of Vertical Development Cumulus Clouds with flat bases and bulging tops. Appear in individual, detached domes, with varying degrees of vertical growth. Cumulus humilis Limited vertical development Cumulus congestus Extensive vertical development Cumulonimbus Dense, vertically developed cloud with a top that has the shape of an anvil. Can produce heavy showers, lightning, thunder, and hail. Also known as a thunderstorm cloud. Cloud Formation Cloud Formation Mechanisms free convection forced convection orography frontal lifting Formation of clouds along a cold and warm front, respectively Fig. 18.1 Pseudoadiabatic Process Condensation, latent heat release occurs during adiabatic ascent Adiabatic process dQ = 0 Pseudoadiabatic process (18.1) dQ Led v,s Saturation mass mixing ratio of water vapor over liquid water pv,s v,s pd Pseudoadiabatic Process Differentiate v,s= pv,s/pd with respect to altitude, substitute dpv,s Le pv,sdT Rv T 2 v,s pv,s pd R Rv pd z pd g RT (18.5) v,s z pv,s pv,s pd Le v,s T v,s g 2 pd z pd z z RT RT Pseudoadiabatic Process Substitute (18.5) and d,m=g/cp,m into (18.4) Le v,s T w d,m 1 z w R T Example 18.1 pd T ---> pv,s ---> v,s ---> w T ---> w = 950 hPa = 283 K = 12.27 hPa = 0.00803 kg kg-1 = 5.21 K km-1 = 293 K = 4.27 K km-1 (18.6) L2e v,s 1 Rc T 2 p,m Dry or Moist Air Stability Criteria (18.7) e d,m e d,m d,m e w e w e w absolutely unstable unsaturated neutral conditionally uns table s aturated neutral absolutely s table Stability in Dry or Moist Air 2 Altitude (km) Altitude (km) 2.2 d,m 1.8 w Absolutely unstable 1.6 1.4 1.2 1 Conditionally unstable 2 Absolutely 3 stable 1 4 0.8 -2 0 2 4 6 8 10 Temperature (o C) 12 14 Fig. 18.2 Stability in Multiple Layers 3 Saturated neutral Altitude Altitude(km) (km) 2.5 Saturated neutral 2 e d w 1.5 1 0.5 Conditionally unstable Unsaturated neutral Absolutely stable Absolutely unstable 0 0 5 10 15 20 Temperature ( oC) 25 Fig. 18.3 Equivalent Potential Temperature Potential temperature a parcel of air would have if all its water vapor were condensed and the resulting latent heat were released and used to heat the parcel Equivalent potential temperature in unsaturated air (18.8) L e p,e p exp c T v,s p,d Equivalent potential temperature in unsaturated air L e p,e p exp v c T p,d LCL (18.9) Equivalent Potential Temperature 3.5 3 Altitude (km) Altitude (km) Relationship between potential temperature and equivalent potential temperature 2.5 2 d,m w 1.5 1 p LCL p,e d 0.5 0 0 5 10 15 20 25 Temperature (K) 30 35 Fig. 18.4 Cumulus Cloud Development 3 Altitude Altitude(km) (km) 2.5 e w 2 d Cloud top Cloud temperature 1.5 LCL 1 0.5 0 5 Dew point of rising bubble 10 15 20 25 30 Temperature ( oC) Temperature of rising bubble 35 Fig. 18.5 Isentropic Condensation Temperature Temperature at the base of a cumulus cloud Occurs at the lifting condensation level (LCL), which is that altitude at which the dew point meets parcel temperature. Isentropic condensation temperature (18.11) 1 p TIC v d,0 4880.357 29.66ln T0 TIC 1 p v d,0 TIC 19.48 ln T 0 Entrainment Mixing of relatively cool, dry air from outside the cloud with warm, moist air inside the cloud Factors affecting the temperature inside a cloud 1) Energy loss from cloud due to warming of entrained, ambient air by the cloud (18.12) * ˆ dQ c T T dM 1 p,d v v c 2) Energy loss from cloud due to evaporation of liquid water in the cloud to ensure entrained, ambient air is saturated (18.13) * ˆ v dMc dQ 2 Le v,s 3) Energy gained by cloud during condensation of rising air (18.14) * dQ3 Mc Led v,s Entrainment Sum the three sources and sinks of energy (18.15) * ˆ v dMc M c Led v,s dQ c p,d Tv Tˆv dMc Le v,s First law of thermodynamics * (18.16) dQ Mc c p,d dTv a dpa Subtract (18.16) from (18.15) and rearrange (18.17) dM c ˆ ˆ c p,d dTv a dpa c p,d Tv Tv Le v,s v Le dv,s Mc Entrainment Divide by cp,d Tv and substitute a=R’Tv/pa (18.18) dMc Led v,s T Tˆ Le v,s dTv R dpa v v v Tv c p,d pa c p,d Tv Tv Mc Rearrange and differentiate with respect to height Tv g Le ˆ ˆv Tv Tv v,s z c p,d c p,d c p,d Tv (18.19) 1 M Le v,s c c p,d z Mc z No entrainment (dMc = 0) --> pseudoadiabatic temp. change Cloud Vertical Temperature Profile Change of potential virtual temperature with altitude v v Tv z Tv z (2.103) v pa pa z Rearrange (18.20) Tv Tv v RTv pa Tv v g z v z c p,d pa z v z c p,d Substitute into (18.19) --> change of potential virtual temperature in entrainment region v v z Tv Le ˆ ˆv Tv Tv v,s c p,d 1 M v Le v,s c Tv c p,d dz Mc z Cloud Thermodynamic Energy Eq. Multiply through by dz and dividing through by dt d v v dt Tv Le ˆ ˆv Tv Tv v,s c p,d (18.22) v Le d v,s E c p,d Tv dt Entrainment rate 1 dMc 3 d 4rt3 E 3 Mc dt 4rt dt 3 (18.23) Cloud Thermodynamic Energy Eq. Add terms to (18.22) --> thermodynamic energy equation in a cloud d v v dt Tv Le ˆ ˆv Tv Tv v,s c p,d (18.24) 1 E + a K h v a d v,s dv,I dQ solar dQ ir v d L Lm Ls Le c p,d Tv dt dt dt dt dt Cloud Vertical Momentum Equation Vertical momentum equation in Cartesian / altitude coordinates (18.25) dw 1 pa 1 g aKmw dt a z a ˆ ag for air outside cloud Add hydrostatic equation, pˆ a z (18.26) ˆa dw a 1 pa pˆ a 1 g a Km w dt a a z a Cloud Vertical Momentum Equation Buoyancy factor (18.27) ˆ ˆa a pa Tˆv pˆ a Tv Tˆv Tv Tv pˆ a pa v B v ˆ a pa Tˆv Tˆv Tˆv pa v Adjust buoyancy factor for condensate (18.28) ˆ 1 1 ˆ L ˆ ˆa a v L v v B v L ˆ ˆ a v v Cloud Vertical Momentum Equation Substitute (18.28) into (18.26) (18.29) ˆ 1 pa pˆ a 1 dw v v g ˆ L a Km w dt z a v a Rewrite pressure gradient term (18.30) 1 pa P g c p,d v a z z z Substitute (18.30) and (18.29) --> vertical momentum equation in a cloud (18.31) ˆ P Pˆ v dw 1 v g ˆ L c p,d v a K m w dt z a v Simplified Vertical Velocity in Cloud Simplify (18.31) for basic calculations Ignore pressure perturbation and the eddy diffusion term (18.32) ˆ dw dw dz dw v v w g ˆ L gB dt dz dt dz v where dz w dt Rearrange (18.32) wdw gBdz Integrate over altitude --> vertical velocity in a cloud w 2 ˆ z v 2 2 v wa 2g ˆ L dz wa 2g z a v (18.33) z zBa dz Convective Available Potential Energy (18.34) ˆ z LNB v CAPE g Bdz g ˆ v dz z LFC z LFC v z LNB Cloud Microphysics Assume clouds form on multiple aerosol particle size distributions Each aerosol distribution consists of multiple discrete size bins Each size bin contains multiple chemical components Three cloud hydrometeor distributions can form Liquid Ice Graupel Each hydrometeor distribution contains multiple size bins. Each size bin contains the chemical components of the aerosol distribution it originated from Cloud Microphysics Processes considered Condensation/evaporation Ice deposition/sublimation Hydrometeor-hydrometeor coagulation Large liquid drop breakup Contact freezing of liquid drops Homogeneous/heterogeneous freezing Drop surface temperature Subcloud evaporation Evaporative freezing Ice crystal melting Hydrometeor-aerosol coagulation Gas washout Lightning Condensation and Ice Deposition Condensation/deposition onto multiple aerosol distributions (18.35) dc L,Ni,t k L,Ni,t h Cv,t SL,Ni,t hC L,s,t h dt (18.36) dc I ,Ni,t k I ,Ni,t h Cv,t S I,Ni,t h CI ,s,t h dt Water vapor-hydrometeor mass balance equation (18.37) NT N B k dCv,t L,Ni,t h Cv,t S L,Ni,t h CL,s,t h dt k I,Ni,t h Cv,t S C I, Ni,t h I,s,t h N 1 i1 Vapor-Hydrometeor Transfer Rates (18.38,9) k L,Ni nlq,Ni 4rNi Dv v,L,Ni Fv,L,Ni mv Dv v,L,Ni Fv,L, Ni Le SL,Ni CL,s L emv * 1 1 a h,Ni Fh,L,Ni T R T nic ,Ni 4 Ni Dv v,I ,Ni Fv,I ,Ni k I ,Ni m v Dv v,I ,Ni Fv,I, Ni L s S I,Ni C I ,s Ls m v * 1 1 a h,Ni Fh,I ,Ni T R T Köhler Equations Liquid (18.40) S L,Ni,t h 1 2 L,Ni,t h mv * rNi R TL 3m v Ns cq,Ni,t h 3 4rNi Ln Ni,t h q1 Ice (18.41) S I,Ni,t h 1 2 I,Ni,t h mv rNi R*TI Rewrite as (18.42) a L,Ni,t h b L,Ni,t h S L,Ni,t h 1 3 rNi r Ni Köhler Equations a L,Ni,t h 2 L,Ni,th mv R*TL 3mw bL, Ni,t h 4 L nNi,t h Ns c q,Ni,t h q 1 Solve for critical radius and critical saturation ratio * rL,Ni,th * S L,Ni,th 1 (18.43) 3bL,Ni,t h a L,Ni,th 4a3L,Ni,t h 27bL,Ni,th (18.44) CCN and IDN Activation Cloud condensation nuclei (CCN) activation (18.45) * rNi rL,Ni and C v,t h S L,Ni,t h C L,s,t h or * * r r and C S Ni L,Ni v,t h L,Ni,t h C L,s,t h Ice deposition nuclei (IDN) activation Cv,t h SI,Ni,t hCI,s,t h (18.46) Solution to Growth Equations Aerosol mole concentrations (18.47,8) cI, Ni,t cI, Ni,th hkI,Ni,t hCv,t SI,Ni,th CI,s,th cL,Ni,t cL,Ni,th hkL,Ni,th Cv,t S L,Ni,thCL,s,t h Mole balance equation Cv,t (18.49) NT N B cL, Ni,t cI, Ni,t N1 i1 Cv,t h NT N B cL, Ni,th cI,Ni,t h Ctot N 1 i1 Solution to Growth Equations Final gas mole concentration (18.50) NT NB k L,Ni,t h SL,Ni,t h Cs,L,t h Cv,t h h C v,t k I,Ni,t h S I,Ni,t h Cs,I ,t h N 1 i1 N T NB 1 h k Li,t h kIi,t h N 1 i 1 Growth in Multiple Layers 10 dn (No. cm ) / d log -3 D -3 dn (No. cm ) / d log 10D p Dual peaks when grow on multiple size distributions, each with different activation characteristic 1600 1400 1200 1000 800 600 400 200 0 872 hPa 835 hPa 788 hPa 729 hPa 656 hPa 10 Particle diameter (D p , m) 100 Fig. 18.6 Growth in Multiple Layers dn (No. cm ) / d log -3 D -3 10 dn (No. cm ) / d log10 Dpp Single peaks when size distribution homogeneous 1600 1400 1200 1000 800 600 400 200 0 872 hPa 835 hPa 788 hPa 729 hPa 656 hPa 10 Particle diameter (D p , m) 100 Fig. 18.6 Hydrometeor-Hydrometeor Coagulation Final volume concentration of component or total particle (18.53) v x,Yk,t h h Tx,Yk ,t,1 T x,Yk ,t,2 v x,Yk,t 1 hTx,Yk,t,3 N H k k1 PY,M n Mj,t h Tx,Yk,t,1 f v Yi,Mj,Yk Yi,Mj,t h x,Yi,t M 1 j1 i1 NH N H k k QI,M,Y n Mj,t h Tx,Yk,t,2 f v Ii,Mj,Yk Ii,Mj,th x,Ii,t M1 I 1 j1 i1 NC N H Tx,Yk,t,3 1 LY,M 1 fYk,Mj,Yk LY,M Yk,Mj,th nMj,t h M 1 j 1 Hydrometeor-Hydrometeor Coagulation Final number concentration nlq,k,t (18.54) v T,lq,k ,t lq,k Volume fraction of coagulated pair partitioned to a fixed bin (18.55) Yk 1 VIi,Mj Nk Yk VIi,Mj Yk 1 k NC Yk 1 Yk VIi,Mj Yk-1 VIi,Mj Yk k 1 fIi,Mj,Yk 1 f Ii,Mj,Yk 1 1 VIi,Mj Yk k NC 0 all other cas es Drop Breakup Size Distribution Drops breakup when they reach a given size dM / M d log D 10 p T dM / MT d log10 Dp 2.5 Breakup distribution 2 1.5 1 0.5 0 0 1000 2000 3000 4000 5000 Particle diameter (D p , m) 6000 Fig. 18.7 Contact Freezing Final volume concentration of total liquid drop or its components (18.59) v v x,lq,k,t x,lq,k,t h 1 hTx,k,t,3 (18.61) NC NT Yk,Nj,th FICN,Nj n Nj,t h Tx,k,t,3 FT N1 j 1 Final volume concentration of a graupel particle in a size bin or of an individual component in the particle (18.60) vx,gr,k,t vx,gr,k,t h vx,lq,k,thTx,k,t,3 Contact Freezing Final number concentrations nlq,k,t (18.62) v T,lq,k ,t lq,k (18.63) ngr ,k ,t vT ,gr ,k ,t gr,k Temperature-dependence parameter 0 FT T 3 15 1 (18.64) T 3o C 18 T 3o C o T 18 C Homogeneous/Heterogeneous Freezing Fractional number of drops of given size that freeze (18.65) FFr,k,t min lq,k exp BTc Tr ,1 Median freezing temperature (18.66) 1 0.5 Tmf Tr ln B lq,k o C 1 ; T 0 o C B 0.475 r o 1 o B 1.85 C ; T 11.14 C r Tm 15 o C o o 15 C Tm 10 C Homogeneous/Heterogeneous Freezing Median freezing temperatureo(oC) C) Fitted versus observed median freezing temperatures -12 -16 -20 -24 -28 10 100 1000 Particle radius (m) 10 4 Fig. 18.8 Homogeneous/Heterogeneous Freezing Time-dependent freezing rate dngr,k,t dt (18.67) nlq ,k,t h lq,k Aexp BTc Tr Final number conc. of drops and graupel particles after freezing (18.68) nlq,k,t nlq,k,th 1 FFr ,k,t (18.69) ngr ,k,t ngr,k,th nlq,k,t h FFr,k,t Homogeneous/Heterogeneous Freezing Fractional number of drops that freeze (18.70) FFr,k,t 1 exp hAlq,k exp BTc Tr Time-dependent median freezing temperature 1 ln 0.5 Tmf Tr ln B hAlq,k (18.71) Homogeneous/Heterogeneous Freezing dn (No. cm ) / d log -3 Dp dn (No. cm-3) / d log1010D p Simulated liquid and graupel size distributions with and without homogeneous/heterogeneous freezing after one hour 10 2 Layer below Cloud top 236.988 K 214 hPa 10 0 10 -2 Graupel, no HHF Graupel, baseline (with HHF) Liquid, baseline (with HHF) 10 -4 10 -6 Liquid, no HHF 10 -8 1 10 100 1000 Particle diameter (D p , m) 104 Fig. 18.9 Drop Surface Temperature Iterate for drop surface temperature at sub-100 percent RH (18.72) ps,n pv,s Ts,n p f ,n 0.5ps,n pv,n Tf ,n 0.5Ts,n Ta pv,n 0.3 ps,n pv,n pv,n Ts,n1 Ts,n a 1 p f ,n pa RvT f,n Dv Le pv,n1 pv,n pv,n Temperature (K) 285 Initial and final T Initial p 280 a 20 and initial T Final T s 15 s s 10 Final RHx10 275 Final p = final p Initial p 270 0 v v 0.8 0.6 0.4 0.2 Initial relative humidity (fraction) 5 s 0 1 Vapor pressure (hPa) and final RH x 10 Air temperature = 283.15 K Vapor pres. (hPa) and final RH Temperature (K) Drop Surface Temperature vs. RH Fig. 18.10 Temperature (K) 248 247 246 245 244 243 242 241 240 Final RH Initial and final T Final T s Initial p 1 a and initial T s Final p = final p Initial p 0 v v 0.2 0.4 0.6 0.8 Initial relative humidity (fraction) 0.8 s 0.6 0.4 0.2 s 0 1 Vapor pressure (hPa) and final RH x 10 Air temperature = 245.94 K Vapor pres. (hPa) and final R Temperature (K) Drop Surface Temperature vs. RH Fig. 18.10 Drop Surface Temperature vs. RH Temperature (K) Vapor pressure (hPa) and final RH x 10 Air temperature = 223.25 K Fig. 18.10 Evaporation Reduction in volume due to evaporation/sublimation nlq,k 4rk Dv v L,lq,k ,t,m MAXv L,lq ,k ,t h 1 p f ,nf pa (18.73) pv,s,0 pv,nf z , 0 L RvT f ,nf V f ,lq,k m dn (No. 10 p dn (No. cm ) / d log -3 -3 cm ) / d log 10DD p Reduction in precipitation size due to evaporation below cloud base 10 3 2 10 1 10 10 Cloud base (872 hPa) 0 10 -1 10 -2 Surface, RH=99% below base Surface, RH=75% below base -3 10 10 -4 1 10 100 1000 Particle diameter (D p , m) 10 4 Fig. 18.11 Evaporative Freezing When drops fall into regions of sub-100 percent RH below cloud base, they start to evaporate and cool. If the temperature is below the freezing temperature, the cooling increases the rate of drop freezing. dn p dn (No. cm ) / d log -3 D Dp (No. cm-3) / d log1010 Incremental homogeneous/heterogeneous freezing due to evaporative cooling below a cloud base Liquid distribution at RH=100%, 10 0 10-2 10-4 p =214 hPa 10-6 10 a T =236.988 K Additonal port ion of liq. distrib. that freezes due t o evap. cooling at RH=80% a -8 10 100 Particle diameter (D p , m) Fig. 18.12 Ice Crystal Melting When an ice crystal melts in sub-100 percent relative humidity air, simultaneous evaporation of the liquid meltwater cools the particle surface, retarding the rate of melting. Thus, the melting temperature must be higher than that of bulk ice in saturated air. Melting point Dv Le pv,s T0 Tmelt T0 MAX a Rv T0 (18.74) pv , 0 Ta Time-dependent change in particle mass due to melting (18.75) 4r Ni mic ,Ni,t mic,Ni,t h - MAXh L m a Ta T0 Fh,I,Ni Dv Le pv,s T0 pv , 0 Fv,I,Ni R T Ta 0 v Aerosol-Hydrometeor Coagulation Final volume conc. of total aerosol particle or its components (18.76) v x,Nk,t h v x, Nk,t 1 hTx,Nk,t,3 NC N H Nk,Mj,th nMj,th Tx,Nk,t,3 M 1 j1 Aerosol-Hydrometeor Coagulation Final volume conc. of total hydrometeor or aerosol inclusions (18.77) v x,Yk,t h h Tx,Yk ,t,1 T x,Yk ,t,2 v x,Yk,t 1 hTx,Yk,t,3 N T k nNj,t h Tx,Yk,t,1 f v Yi,Nj,Yk Yi, Nj,th x,Yi,t N1 j 1 i1 NT k k1 nYj,t h Tx,Yk,t,2 f v Ni,Yj,Yk Ni,Yj,t h x,Ni,t N1 j1 i1 NB N T Tx,Yk,t,3 1 fYk, Nj,Yk Yk, Nj,th nNj,th N1 j 1 k Aerosol-Hydrometeor Coagulation Final number concentrations (18.78) v T,Nk ,t n Nk,t Nk (18.79) v T,Yk,t nYk,t Yk Aerosol-Hydrometeor Coagulation dn (No. 10 p -3 cm-3 ) Aerosol number 20 15 10 5 /d 500 25 p Dp log10 D 1000 30 10 ) / d log dn (No. cm 1500 Below cloud base Aerosol (902 hPa) volume 35 dv 2000 3 -3-3 ) (m 3 cm dV( m cm ) / d log D Dp / d log10 Below-cloud aerosol number and volume concentration before (solid lines) and after (short-dashed lines) aerosol-hydrometeor coagulation 0 0.001 0 0.01 0.1 1 10 Particle diameter (D , m) p 100 Fig. 18.13 Gas Washout Gas-hydrometeor equilibrium relation c q,lq,t,m Cq,t,m (18.80) NC HqR*T pL,lq,t,m k1 Gas-hydrometeor mass-balance equation (18.81) zm1 Cq,t,m c q,lq,t,m Cq,t h,m c q,lq,t,m1 zm Gas Washout Final gas concentration in layer m (18.82) z Cq,t h,m cq,lq,t,m1 m1 zm Cq,t,m NC 1 HqR*T pL,lq,t,m k 1 Final aqueous mole concentration (18.83) zm 1 c q,lq,t,m Cq,t h,m c q,lq,t,m1 Cq,t,m zm Lightning Coulomb’s law (18.84) Fe k CQ0 Q1 2 r01 Electric field strength (18.86) Fe,0i k CQi Ef 2 Q0 r i i 0i Rate coefficient for bounceoff (18.87) BIi,Jj,m 1 Ecoal,Ii,Jj,m KIi,Jj,m Lightning Charge separation rate per unit volume of air dQb,m dt (18.88) N H NC NH NC Ii nIi,t nJj,t h Jj nIi,t h n Jj,t BIi,Jj QIi,Jj Ii Jj J 2 j 1 I J i j m Overall charge separation rate dQb,c Fc Acell dt (18.91) K b ot m Kto p dQb,m zm dt Lightning Time-rate-of-change of the in-cloud electric field strength dE f (18.92) dQb,c 2k C dt Zc Z c2 Rc2 dt Summed vertical thickness of layers Zc (18.93) Kbo t zm m K to p Horizontal radius of cloudy region Rc Fc Acell (18.94) Lightning Number of intracloud flashes per centimeter per second (18.95) dFr 1 dE f dt Z cEth dt Number of NO molecules per cubic centimeter per second (18.96) El FNO dFr ENO Acell dt