Download

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PHY2048 Spring 2015
PHY2048 Exam 2 Formula Sheet
Work (W), Mechanical Energy (E),r Kinetic Energy (KE), Potential Energy (U)
r
r r
r r
r r
dW
2
r→F ⋅d
Kinetic Energy: KE = 12 mv
Work: W = F ⋅ dr ⎯⎯ ⎯ ⎯
Power: P =
=
F
⋅v
⎯
Cons tan t F
∫rr
dt
2
1
r
r2
r
∫
r
Potential Energy: ΔU = − F ⋅ dr
Work-Energy Theorem: KE f = KEi + W
r
r1
Work-Energy: W(external) = ΔKE + ΔU + ΔE(thermal) + ΔE(internal)
Fx ( x) = −
dU ( x)
dx
Work: W = -ΔU
U ( y ) = mgy
Gravity Near the Surface of the Earth (y-axis up): Fy = − mg
Spring Force: Fx ( x) = − kx
U ( x) = 12 kx 2
Mechanical Energy: E = KE + U Isolated and Conservative System: ΔE = ΔKE + ΔU = 0
E f = Ei
Linear Momentum, Angular Momentum, Torque
r
t
r
r
r r dp
r f r
p2
Linear Momentum: p = mv F =
Kinetic Energy: KE =
Impulse: J = Δp = ∫ F (t )dt
dt
2m
ti
Center of Mass (COM): M tot =
N
∑ mi
i =1
r
r
r
dPtot
Net Force: Fnet =
= M tot aCOM
dt
r
1
rCOM =
M tot
r
∑ mi ri
N
i =1
r
N
∑p
i =1
i
N
r
r
r
Ptot = M tot vCOM = ∑ pi
i =1
N
Moment of Inertia:
r
1
vCOM =
M tot
I = ∑ mi ri 2 (discrete) I = ∫ r 2 dm
i =1
(uniform)
Parallel Axis: I = I COM + Mh 2
r
θf
r r dL
Torque: τ = r × F =
Work: W = ∫ τ dθ
dt
θi
r
r
r
r
r
dp
Conservation of Linear Momentum: if Fnet =
= 0 then p = constant and p f = pi
dt r
r
r
r
r
dL
Conservation of Angular Momentum: if τ net =
= 0 then L = constant and L f = Li
dt
Rotational Varables
r r r
Angular Momentum: L = r × p
Angular Position:
r
2
θ (t ) Angular Velocity: ω (t ) = dθ (t ) Angular Acceleration: α (t ) = dω (t ) = d θ 2(t )
dt
dt
Torque: τ net = Iα Angular Momentum: L = Iω
Arc Length: s = Rθ
Rolling Without Slipping: xCOM = Rθ
L
Power: P = τω
2I
Tangential Acceleration: a = Rα
Kinetic Energy: Erot = 12 Iω 2 =
Tangential Speed: v = Rω
dt
2
vCOM = Rω aCOM = Rα
2
KE = 12 MvCOM
+ 12 I COM ω 2
Rotational Equations of Motion (Constant Angular Acceleration α)
ω (t ) = ω0 + αt
θ (t ) = θ 0 + ω0t + 12 αt 2
ω 2 (t ) = ω02 + 2α (θ (t ) − θ 0 )
Page 1 of 1
Related documents