Download Ch10

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Dynamics of Rotational Motion
The main problem of dynamics: How
 a netforce affects
(i) translational (linear) motion  F  ma (Newtons’ 2nd law)
(ii) rotational motion ???

m
(iii) combination of translational
F
and rotational motions ???
αz

a
Lever arm l is the distance between the
line of action and the axis of rotation,
measured on a line that is
to both.

Axis of
rotation
  
  rF
Definition of torque:
τz > 0 if the force acts counterclockwise
τz < 0 if the force acts clockwise
Units: [ τ ] = newton·meter = N·m
A torque applied to a door
Newton’s Second Law for Rotation about a Fixed Axis
Only Ftan contributes to the torque τz .
(i) One particle moving on a circle: Ftan=matan and atan= rαz
rFtan= mr2 αz
τz
τ z = I αz
I
(ii) Rigid body (composed of many particles m1, m2, …)

2
i  iz   i m i ri   z   z  I z
Example 10.3: a ,T ,T ?
1x
1
Pulley: T2R-T1R=Iαz
T2-T1=(I/R2)a1x
Glider: T1=m1a1x
Object: m2g-T2=m2a1x
Only
external
torques
(forces)
count !
a1 x 
m2 g
m1  m 2  I / R 2
T1 
m1m 2 g
m1  m 2  I / R 2
T2 
(m1  M )m 2 g
m1  m 2  I / R 2
2
a1x
a1x=a2y=Rαz
a2y
y
Work-Energy Theorem and Power in Rotational Motion
Rotational work:
dW R  Ftan ds  Ftan Rd   z d 
2
W R    z d
1
For  z  const  WR   z ( 2  1 )   z 
Work-Energy Theorem for Rigid-Body Rotation:
2
1 2 1 2
W R   I  z d  z  I  2  I  1  K R 2  K R1
2
2
1
d z d
 I z d z
Proof:  z d  I
dt
Power for rotational work or energy change:
dW R
d
PR 
z

dt
dt
PR   z z
( analo g of
 
P  F v)
Rigid-Body Rotation about a Moving Axis
General Theorem: Motion of a rigid body is always
a combination of translation of the center of
mass and rotation about the center of mass.
Energy:
Proof:
1
1
2
2
K  Mv cm  I cm 
2
2
2  2  
1 2
1
K   m i v i   m i (v cm  v 'i 2v cm  v 'i ) 
i 2
i 2
2 2
1
2 1
   m i v cm   m i r 'i 
2 i
2 i



since  mi v i ' 

 drcm '
d
m
r
0

i i '
dt i
dt
Rolling without
slipping: vcm= Rω,
ax = R αz

General Work-Energy Theorem:
E – E0 = Wnc ,
E=K+U
Rolling Motion
Sliding and deformation of a tire also cause rolling friction.
Rolling Friction
Combined Translation and Rotation: Dynamics


 Fi  Macm
i
and

iz
 I cm z
i
Note: The last equation is valid only if the axis
through the center of mass is an axis of
symmetry and does not change direction.
Exam Example 24: Yo-Yo has Icm=MR2/2 and
rolls down with ay=Rαz (examples 10.4, 10.6; problems 10.20, 10.67)
Find: (a) ay, (b) vcm, (c) T
Mg-T=May
τz=TR=Icmαz
y
ay
ay=2g/3 , T=Mg/3
4 gy
v cm  2ay 
3
Exam Example 25: Race of Rolling Bodies (examples 10.5, 10.7; problem 10.22,
y
Data: Icm=cMR2, h, β problem 10.27)
Find: v, a, t, and min μs
FN
preventing from slipping
β
 
v a
Solution 1: Conservation of Energy Solution 2: Dynamics
K1  U1  K 2  U 2 , K1  0, U 2  0  (Newton’s 2nd law) and
rolling kinematics a=Rαz
fs
1
1
1
Mv 2  I 2  (1  c ) Mv 2
2
2
2
I  cMR 2 and   v / R
Mgh 
for
x
2 gh
v
1 c
v2=2ax
g sin 
 F x  Mg sin   f s  Ma  a  1  c
g sin    z  f s R  I cm z  cMRa  f s  cMa
a
1  c v  2 ax  2 g sin  h  2 gh
1  c sin 
1 c
x 2x
1
t 

v
v
sin 
2 h (1  c )
g
fs
c
c Mg sin  c tan 
f s  Mg sin   Ma 
Mg sin   min  s 


1 c
F N 1  c Mg cos 
1 c
Angular
   Momentum


(i) One particle: L  r  p  r  mv  L  mvr sin 




 dL   
dL  dr
dv  
 
   mv    r  m   r  ma 
 r  F 
dt  dt
dt 
dt
 
Impulse-Momentum Theorem for Rotation




dL
 
(ii) Any System of Particles: L   Li 
dt
(nonrigid or rigid bodies)
i
It is Newton’s 2nd law
for arbitrary rotation.
 
m (v  v )  0

Note: Only external torques count
since

i nt er na l
 0.
Unbalanced wheel: torque of friction in bearings.
(iii) Rigid body rotating
around a symmetry axis:
 
Lz   Li   mi ri  z  I z  L  I
2
dLz
d z
I  const and
I
 I z   z  I z
dt
dt
Principle of Conservation of Angular Momentum
Total angular momentum of a system is constant (conserved),
if the
acting on the system is zero:
 net external torque



dL
dL
  
 0  L  const
dt
dt
if

  0
For a body rotating around a symmetry axis:
I1ω1z = I2ω2z
Example: Angular acceleration due to sudden
decrease of the moment of inertia
I0
 f   0   0 si nce I 0  I f
If
Origin of Principles of Conservation
ω0 < ωf
There are only three general principles of conservation
(of energy, momentum, and angular momentum) and
they are consequences of the symmetry of space-time
(homogeneity of time and space and isotropy of space).
Hinged board (faster than free fall)
2
mgh

mv
/ 2  tball  2h / v  (2L / g ) sin  0
m Ball:
h=L sinα

Mg
In[28]:=
f s_ : NIntegrate 1 Sqrt 1 x x
tcup
Plot f s , 1 , s, 0, 1
s x
Board: I=(1/3)ML2
h0  h I 2 ML2 (d / dt ) 2
Mg


2
2
3
2
d
3g


(sin  0  sin  )
dt
L
6 s , x, 0, s ;
tcup 
1.2
tball
tcup
1.1
tball
Out[29]=
1.0
0.2
2/3
0.4
0.6
0.8
1.0
Critical  0  500
sin  0

L
3g
0

0
d
sin  0  sin 
1
6 sin  0
sin 0

0
dx
(1  x 2 )(sin  0  x)
Gyroscopes and Precession
Precession is a circular motion of the axis
due to spin motion of the flywheel about axis
Period of earth’s precession is 26,000 years.
 
Dynamics of precession: d L   dt

L0  0 (  0)

 n
Fc ac

L0  0 (  )
Precession angular speed:

dL
 z mgr
d

  

dt
I
L dt Lz
Circular motion of the
center of mass requires
a centripetal force
Fc = M Ω2 r
supplied by the pivot.
Nutation is an up-and-down

w
wobble of flywheel axis
that’s superimposed on the
precession motion if Ω ≥ ω.
Analogy between Rotational and Translational Motions
Physical Concept
Rotational
θ
ω
α
Torque τ
Moment of
inertia I = Σmr2
Στ = I α
Newton’s second law
τθ
Work
Kinetic Energy
(1/2) Iω2
Momentum
L=Iω
Displacement
Velocity
Acceleration
Cause of acceleration
Inertia
Translational
s
v
a
Force F
Mass m
ΣF = ma
Fs
(1/2) mv2
p = mv
Related documents