Download g=r 2

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
New Windows on the
Universe
Jan Kuijpers
• Part 1: Gravitation & relativity
J.A. Peacock, Cosmological Physics, Chs. 1 & 2
• Part 2: Classical Cosmology
Peacock, Chs 3 & 4
10/5/2004
New Windows on the Universe
Part 2: Classical cosmology
• The isotropic universe (3)
• Gravitational lensing (4)
10/5/2004
New Windows on the Universe
The isotropic universe
• The RW metric (3.1)
• Dynamics of the expansion (3.2-3.3)
• Observations (3.4)
10/5/2004
New Windows on the Universe
Gravitational lensing
•
•
•
•
Lense equation; lensing potential (4.1)
Simple lenses (4.2)
Fermat’s principle (4.3)
Observations (4.4-4.6)
10/5/2004
New Windows on the Universe
The isotropic universe
The RW metric (3.1)
Define fundamental observers: at rest in local matter distribution
Global time coordinate t can be defined as proper time measured
by these observers
SR:
c d  c dt  dr
2
2
2
2
2
Here: c 2d 2  c 2dt 2  R 2 (t )[f 2 ( r )dr 2  g 2 ( r )d 2 ]
d 2  d 2  sin 2  d 2
Choose radial coordinate so that either f=1 or g=r2
10/5/2004
New Windows on the Universe
The RW metric (3.1)
c 2d 2  c 2dt 2  R 2 ( t )[dr 2  Sk2 ( r )d 2 ]
(k  1)
 sin r

Sk ( r )   sinh r (k  1)
r
(k  0)

Different definition of comoving distance r:
Sk ( r )  r
2

dr
2
2
2
2
2
2
2
c d  c dt  R ( t ) 
 r d 
2
 1  kr

Or dimensionless scale factor:
a( t ) 
R( t )
R0
Or isotropic form:
2
R
(t )
2
2
2
2
2
2
2
c d  c dt 
dr

r
d


2
2 
( 1  kr / 4 )
10/5/2004
New Windows on the Universe
The RW metric (3.1)
t
Or define conformal time:
cdt'

R( t')
0
c d  R ( t )  d  dr  r d
2
10/5/2004
2
2
2
New Windows on the Universe
2
2
2

Redshift
Proper (small) separation of two fundamental observers:
d  R( t )dr
dv 
d
R
 R dr  d
dt
R
H( t ) 
Hubble’s law
R( t )
R( t )
Comoving distance between two fo’s is constant:
r
tobs

tem
cdt

R( t )
t obs dt obs

tem dtem
cdt
dt em
dt obs



R( t )
R( t em ) R( t obs )
 em
R( t obs )
 1 z 
 obs
R( t em )
10/5/2004
New Windows on the Universe
Dynamics of the expansion (3.2-3.3)
GR required: - Birkhoff’s theorem
- Integration constant
Friedmann eqns: Use RW metric in field eqns (problem 3.1):
2 2
8 G  R 2

R
c
2
R 
 kc 
3
3
4 GR 
3 p  Rc 2
R
  2 

3 
c 
3
Newton.:
1. Energy eqn.
Take time derivative +
energy conservation
2
d   c 2R 3    pd  R 3   Eqn. 2
 8 G 
kc 2


  m ( a )   r ( a )  v ( a )  1  2 2
2
c
3H
H R
10/5/2004
New Windows on the Universe
• Flatness problem
• Matter radiation equality:
m / r  ( 1  z )1  1  zeq
23900h2
• Recombination:
1+zrec=1000
• Matter dominated and flat: R(t )  t 2 / 3
• Radiation dominated and flat:
1/ 2
R(t )  t
• Vacuum energy (p=-c2 follows from energy conservation):
8 G v c 2
v 

2
3H
3H 2
Empty De Sitter space:
R  e Ht where H 
10/5/2004
8 G v

3
c 2
3
New Windows on the Universe
Observations (3.4)
Luminosity distance: the apparent distance assuming
inverse square law for light intensity reduction
-Luminosity L : power output/4
-Radiation flux density S: energy received per unit area per sec
L
S 2 2
 Dlum  ( 1  z )R0Sk ( r )
2
R0 Sk ( r )( 1  z )
Redshift for photon energy and one for rate
Angular-diameter distance: the apparent distance based on
observed diameter assuming euclidean universe
 R( t em )Sk ( r )  DA 
10/5/2004


New Windows on the Universe
R0Sk ( r )
1 z
Gravitational lensing
Lensing equation; lensing potential (4.1)
Relativistic particles in weak fields (eq. 2.24):

d 2y
v 2  d
d
  1 2 
 2
2
dt
c  dy
dy

Bend angle (use angular diameter distances):
2
  2  ad
c
10/5/2004
Approximation: geometrically
thin lenses
New Windows on the Universe
Gravitational lenses are flawed!!!
10/5/2004
New Windows on the Universe
Gravitational imaging
10/5/2004
New Windows on the Universe
Lensing equation
DLS
DL
DS

DS
  DL I  
 I S
DLS

 
where  I  S is
mapping between 2D object and image planes
Flux density from image is:
 Amplification is ratio of areas
S  I   image area  

I
3
10/5/2004
is invariant


 I

A



 S


New Windows on the Universe
Lensing potential
2
2
2
  2  a d  2   2  d  2  2   d
c
c
c
 
DLS
I S 
  DL I     I
DS
DLDLS 8 G

 
2
Poisson
2
DS
c
c
2
surface density     d
DS
c2
critical sd c 
DLDLS 4 G
  ( ) 
10/5/2004
1
2

(

')ln



'
d
'

 c
New Windows on the Universe
Notation:
- potential!
Simple lenses (4.2)
Multiple images
DLS
Circularly symmetric surface
mass density:
4G M   b 
 2
c
b
where b  Dl I is closest distance
and M   b  is mass in projection
10/5/2004
New Windows on the Universe
DL
Einstein ring
S
r
L

E
DL
DS
1/ 2
1/ 2
 2 RS DLS 
 2 RS 
E  
 

 DL 
 DS DL 
10/5/2004
New Windows on the Universe
O
Typical numbers
Einstein Radius point mass:
 M

 E   11

10
M


1/ 2
 DLDS / DLS 


Gpc


1 / 2
arcsec
ER isothermal sphere:
v

 DLS
E  
arcsec

 186 km/s  DS
2
Critical surface density:
DLS / Gpc 

 c 3.5
kg/m2
 DL / Gpc  DS / Gpc 
10/5/2004
New Windows on the Universe
  DL I  
Time delays

DS
 I S
DLS

b
DLS
DL
DS
Time lags between multiple images because of:
1. Path length difference:
2
c t g 
b
2
1  zL  
  I   S  DL
2
1  zL  
 I   S 
DLDS
2DLS
1  zL 
2. Reduced coordinate speed of light (static weak fields):
2 
2  2
2


c 2d 2   1  2  c 2dt 2   1  2  dr  c t p    1  zL  2 d
c 
c 
c


10/5/2004
New Windows on the Universe
Fermat’s principle (4.3)
Images form along paths where the time delay is stationary

  I , S

 
2
DLS
1

c t   I   S    I
2
1  zL  DLDS
Note: differentiation wrt I
recovers lens equation.
Example: from a to d:
introduction of increasing mass
(increasing -) leads to extra
Stationary points (minima,
Maxima, saddle points in )
10/5/2004
New Windows on the Universe
Caustics and catastrophe theory
10/5/2004
New Windows on the Universe
Lens model for flattened galaxy at two different relative distances.
a: density contours
c: caustics in image plane
b: time surface contours d: dual caustics in source plane
10/5/2004
New Windows on the Universe
Observations (4.4-4.6)
Light deflection around the Sun
1.75”
The Sun
1,75''
10/5/2004
2 RS
4GM
 

2
R c
R
New Windows on the Universe
Newton/Soldner versus Einstein
10/5/2004
New Windows on the Universe
10/5/2004
New Windows on the Universe
Total eclipse
21 september 1922
Western Australia,
92 stars (dots are
reference positions,
lines displacements,
enlarged!)
10/5/2004
New Windows on the Universe
Strong lensing
10/5/2004
New Windows on the Universe
10/5/2004
New Windows on the Universe
Modelling
10/5/2004
New Windows on the Universe
10/5/2004
New Windows on the Universe
10/5/2004
New Windows on the Universe
10/5/2004
New Windows on the Universe
10/5/2004
New Windows on the Universe
Robert J. Nemiroff
1993:
Sky as seen past
a compact star,
1/3 bigger than its
Schwarzschild
radius, and at a
distance of 10
Schwarzschild radii.
The star has a
terrestrial surface
topography
10/5/2004
New Windows on the Universe
Sirius
Orion
Orion
Sirius
10/5/2004
New Windows on the Universe
10/5/2004
New Windows on the Universe
Related documents