Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Scientific and technical feasibilities of VSOP-2 astrometry of H2O masers in the Magellanic Clouds Hiroshi Imai (Kagoshima University) VSOP-2 KSP Maser Working Group version on 2010 April 28 1 Key issues in scientific and technical feasibilities (in lower ASTRO-G sensitivity case) • Targets of H2O maser astrometry with VSOP-2: the Galactic System Milky Way (D>10 kpc), LMC, SMC • scientific feasibility of study on H2O masers – scientific background: c.f. astrometry with GAIA – scientific rationale: deviation from galactic rotations – challenging: trigonometric parallax measurements • technical feasibility – – – – phase-referencing (ASTRO-G orbits, calibration) image quality v.s. maser spot / reference source structures sensitivity: ~1 Jy (H2O maser), ~300 mJy (reference) observation scheduling: depending on tracking stations 2 Scientific feasibility of VSOP-2 study on H2O masers 1. Maser astrometry – Current trigonometric distance scale < diameter of the Galaxy – Current proper motion measurements > 1-year baseline – Current main topics • global parameters of the Milky Way • Individual local YSOs and evolved stars in the Milky Way – Targets of VSOP-2 • trigonometric distance scale over 10 kpc • proper motions of 100 μas yr-1 within 1 year baseline • YSOs and evolved stars in critical or rate phases and sites critical evolutional phases: YSO mass accretion or helical jet formation critical astrophysical sites: LMC and SMC, (mini) starburst in LMC (30 Dor) 2. Maser astrophysics: e.g. intraday variable (tiny structure and turbulence, beaming) 3. Stellar physics: acceleration 3 H2O masers in LMC 14 H2O masers with Sν >1 Jy in LMC (Katayama & Imai 2008, in prep) Measurable: LMC/SMC 3D motions LMC rotation parallax LMC center and motion 420 μas/yr c.f. 21 field (around QSO) HST astrometry with 1.1—2.8 yr baselines, σv~100 km/s (σerr~50 km/s) (Piatek et al. 2008) 4 LMC galactic rotation curve and peculiar motions LMC galactic rotation curve and its deviations 2D deviations from rotation curve Residual from rotation curve: σerr~50 km/s Piatek et al. 2008 5 Forecast of GAIA astrometry http://www.esa.int/esaSC/120377_index_0_m.html • 10 μas-level astrometry for 109 stars • σπ~24 μas for V=15 mag • σπ~44 μas for V=18 mag Piatek et al. 2008 (Mignard et al. 2003) • optical-band astrometry, away from Galactic disk • Launch around 2012? (Lindegren et al. 2007) 6 Technical feasibility See Y. Asaki’s simulation (Asaki et al. 2007) • (u,v) plane coverage (changing with ~3 yr period) • antenna fast switching (~1 min possible with LBA) • targetーreference separation (<1° ?) • ASTRO-G orbit accuracy (~10 cm) Other issues • scheduling for astrometry Astrometric accuracy • maser feature structure 0.5 f • maser feature lifetime RSN RSN 10, 100as, 1 f 2 7 When observed for parallax measurement? • Peaks of the annual parallax ellipse: 2 seasons/year • Tracing maser trajectory: 3 epochs/season or reliable measurements of the ellipse peak: 2 epochs/season • Longer time baseline for ellipse reconfirmation: 2—3 years Most suitable: 18 epochs/3 years Sgr B2 H2O maser astrometry with VLBA (Reid et al. 2009) 8 (u,v) plane coverage (24 hr) for LMC • Always (u,v) hole • Poor coverage for ~4 months every 3 years • Case with only Usuda tracking station – Only in the first year for available monthly monitoring – valid observation in every 3-4 days 9 Snap-shot detection confirmation with ATCA • Quick look of phase stability in 10 sec integration integration: 1σ ~ 2 mJy @K-band σ(Tb)~7 K (R~0.2 pc) 63 sources (K-band) 45 sources (K-band) Katayama & Imai (2010 in prep.) 10 Unique angular resolution for crowded H2O maser features VSOP-2 beam (for LMC @48 kpc) H2O maser spots and features in W3 IRS5 @2 kpc (Imai et al. 2002) D>10 kpc for VSOP-2 11 Requested hours of observations • Annual parallax measurements in LMC ~1400 hours N113 (〜50 Jy) ー J0518-6935 (〜40 mJy) Δθ=0°.51 In-beam astrometry possible with new reference? HII-1186 (〜3Jy) ― J0440-6952 (〜160 mJy) Δθ=1°.34 04521-6928 (〜3Jy) ― J0440-6952 Δθ=1°.08 In-beam astrometry possible with new reference? 12 hours × 18 epochs × 2 sources =432 hours • Proper motion measurements in LMC (maserーQSO) 12 hours × 5 epochs × 10 sources =600 hours • Proper motion measurements in SMC (maserーQSO) S7 (〜5 Jy) ー J0028-7045 (〜80 mJy) Δθ=0°.20 12 hours × 5 epochs × 4 sources =240 hours • Star burst region (30 Dor, maserーQSO, in-beam masers) 12 hours × 7 epochs × 1 sources =84 hours 12 Supplements 13 scientific feasibility of study on H2O masers 1. Physics of astrophysical masers (supplement) – excitation, amplification, beaming, saturation, polarization – Intraday variation has been reported. – technical requirement: resolving fine structures (<10-2 AU) in the whole maser gas clump (~100 AU) • high quality imaging (dynamic range > 10,000, 10 ≦ B ≦ 10,000 km) • snapshot (< 1 hour) imaging 2. Stellar physics explored with H2O masers – earliest phase since birth of star • “micro-jet” (e.g. Furuya et al. 2000) • circular “bubble” (e.g. Torrelles et al. 2001) – final phase before death of star • H2O molecules in a planetary nebula (e.g. Miranda et al. 2001) • “water fountain” (e.g. Imai et al. 2002) • stellar shock waves in envelope (Imai et al. 2003) – high resolution exploration (with VSOP-2) • acceleration (rotation/helical motion, accretion, deceleration) 14 scientific feasibility of study on H2O masers (today’s main) 3. Maser astrometry – Current trigonometric distance scale < diameter of the Galaxy • IRAS 19134+2131: D=8.0+0.9-0.7 kpc (Imai et al. 2007) • S269: D=5.29+0.49-0.41 kpc (Honma et al. 2007, c.f. Reid et al. 2009) • Sgr B2: D=7.9+0.8-0.7 kpc (Reid et al. 2009) c.f. BeSSeL project for MW (Reid et al. in VLBA Large Project) – Current proper motion measurements • For Galactic thin disk components: too large θ0 argument (Reid et al. 2009) peculiar motions by up to 30 km/s (Baba et al. 2009) • proper motions of M33: 54±12 μas yr-1, 3-year baseline (Brunthaler et al. 2005) • orbit and mass of stellar objects in H2O maser sources (e.g., Imai et al. 2007) – Targets of VSOP-2 • trigonometric distance scale over 10 kpc • proper motions of 100 μas yr-1 in 1 year baseline 15 Geometrical distance measurements: always technical challenging R0 (supplement) Previous results Maser astrometry results or goals D=8.24±0.50 kpc Mira variables (Matsunaga et al. 2009) D=7.9+0.8-0.7 kpc trogonometric parallax (Sgr B2, Reid et al. 2009) D=8.07±0.45 kpc Stellar orbit statistics D=8.4±0.6 kpc global model fitting (Reid et al. 2009) (Ghez et al. 2008) D=7.94±0.63 kpc Pop. II Cepheids & RR Lyrs D=7.1±1.5 kpc (Groenewegen et al. 2006) (Sgr B2N&M, Reid et al. 1988) Expanding flow parallax D=7.52±0.45 kpc Red clump stars (Nishiyama et al. 2006) D (LMC) D=52.0+3.5-3.2 kpc RR Lyrs (Szewczyk et al. 2008) D=47.9±1.1 kpc Chepheids (Szewczyk et al. 2008) D=51.7±2.3 kpc SN1987A expansion (Panagia 1991) Annual parallax with VSOP-2 Marginal detection (σD/D~30%) LMC rotation parallax σD/D~10% 16 Galactic rotation deviation rather than (supplement) Galactic rotation curve • Galactic parameters – VERA: ~500 masers – VLBA/BeSSeL: ~500 masers • Galactic rotation curve derive up to 60 kpc – e.g., 2,400 BHB stars in SDSS DR6 (Xue et al. 2008) • Deviation from the Galactic rotation curve – e.g. Baba et al. 2009 17 Scientific feasibility of study on H2O masers in Magellanic Clouds • unique targets for VSOP-2 (θbeam〜100 μas) Three major goals • LMC galactic rotation and rotation deviation • Orbits of MCs around MW • diagnosing interior of star burst activity Trial: annual parallax detection (π~20μas) 18 Solving fundamental parameters of galactic kinematics (flat rotation) free parameters in galactic kinematics (Np = 10) • dynamical center (Xg, Yg, Zg): scaled by distance D • secular motion (Vxg, Vyg, Vzg) : scaled by distance D • rotation axis (ig, PAyg) : linked with D • rotation parameter (Vrot (r=rg), dVrot/dr) : linked with D observables from maser sources (3 × Nmaser) • 3D velocity vector (μx, μy, Vz)(x, y) freedom of best-fitting: Nf = 3 × Nmaser- Np >> 1 2 estimation of location along line-of-sight f z 0 i z i 19 LMC galactic rotation • Kinematic center: well known – α= 05h17m. 6, δ=-69°02’ [J2000] (Kim et al. 1998) • Systemic line-of-sight velocity: well known – Vsyshelio=279 km/s (Kim et al. 98), 274 km/s (Luks & Rohlfs 1992) • Rotation axis inclination: well known – 31°.3±3°.5 (Subramaniam & Subramaniam 2009) – 30°.7±1°.1 (Nikoraev et al. 2004) – 34°.7±6°.2 (van der Marel & Cioni 2001), 22°±6° (Kim et al. 1998) • Rotation axis position angle: varying with radius – 52°ー77° (e.g., Caldwell 1986) • Rotation curve: depending on population – HI map: 60ー70 km/s @275’ (Kim et al. 1998) – HST images: 120±15 km/s @275’ (Piatek et al. 2009) • How large deviation from the rotation curve? – 10ー30 km/s in MW (Reid et al. 2009; Asaki et al. 2009) 20 HST proper motion measurements (after subtracting the center-of-mass space velocity) 21 fields Center (α,δ)= (5h27m.6, 69°52.2’) Piatek et al. 2008 21 Dynamics of the Milky Way system (DMW > 50 kpc) • Secular (proper) motion of LMC : roughly known – (μα, μδ)= (1.956 ± 0.036 , 0.435 ± 0.036) [mas/yr] (Piatek et al. 2008) – (μα, μδ)= (1.94 ± 0.29 , -0.14 ± 0.36) [mas/yr] (Kroupa & Bastian 1997) • Systemic line-of-sight velocity: well known – Vsyshelio=279 km/s (Kim et al. 98), 274 km/s (Luks & Rohlfs 1992) • LMC gravitationally bound by the Milky Way? – Dependent on the Milky Way rotation velocity (V0~230 km/s or 250 km/s?) – LMC: gas rich galaxy should be less interacted with the Milky Way Shattow & Loeb (2009) 22 3D internal motions of individual H2O maser sources 10 km/s ⇒ 40μas/yr ⇒ 10μas/3 months more than 20 proper motions for kinematic model fitting c.f. σerr~3 km/s from 64 motions (Imai et al. 2000) M33 @800 kpc (Argon et al. 2004) ΔT=14 yr 23 H2O masers in 30 Dor (N157A) • Survey of Oliveira et al. (2006) – 3, 1, 0.4, 0.4 Jy (75 Jy @10 kpc << H2O masers in W49N) – Δv~20 km/s – compressed interface regions Feedback process for star formation? 24 diagnosing interior of star burst activity 30 Dor (N157A, 159, 160) • 3D internal motions in individual H2O maser sources – Finding the youngest site of massive star formation – Dynamical time scale of the outflow interaction • 3D relative motions among H2O maser sources – Motions of YSO in GMC: cloud-cloud collision? • GMC motion in LMC: tracing the possible trigger of star burst? 25 26 H2O masers in LMC ATCA archive (Katayama & Imai 2008) 27 H2O masers in SMC ATCA archive (Katayama & Imai 2008) 28 H2O masers in LMC & SMC 29 Pre-lunch study/ preparation (planning) • VSOP-2 action items – Reference source candidate survey • 22 GHz and 43 GHz surveys wit ATCA (in processing) • Candidate detection and position measurements with LBA – fixing possible observation schedule – tracing astrometry activity – VLBI astrometry demo with LBA – VSOP-2 astrometric calibration scheme • Scientific driving – dynamics of the Local Group – dynamics of star burst region (without AGN) – star formation in metal-poor environment 30 CH3OH masers? • 4 sources (Green+2009) – Brightest: 3.8 J in IRAS 05011-6815 (without H2O maser) – >0.3 Jy N11/MC18 N105/MC23 N160a/MC76 31 How is seen? galactic rotation vector depending on the location in LMC (~400μas/yr) 32 Collaboration with LBA • Hartebeesthoek (South Africa) may be valid. • eVLBI network completed – Remote (internet) operation – Software correlation • Slow antenna slew (0°.2/s in Parkes), but 1 min switching is possible • SKA high-band after 2020 33 Scientific feasibility of MC astrometry • unique targets for VSOP-2 (θbeam〜100 μas) – Most feasible at 10 kpc < D < 40 kpc (Asaki priv. comm.) Three major goals • galactic rotation and rotation deviation – 21 ⇒ ~30ー40 proper motions • dynamics of the Milky Way system • diagnosing interior of star burst activity – “local” gas dynamics (bubble, cloud collision) – YSO outflow activity Trial: annual parallax (π~20μas) 34 Calculation of VLBI array sensitivity ij 1. Baseline sensitivity 1 SEFDi SEFD j c 2B 1. Array sensitivity (see VSOP Proposer’s Guide) A NB k1 w 2 k 2 k For the case with same sensitivity telescopes like VLBA NB k1 wk A for k - th baseline N ANT N ANT 1 2 ※(effective) VSOP-2 sensitivity: only using ASTRO-G – GRT baselines 35 Calculation of “effective” VSOP-2 sensitivity SEFDASTROG A c 2B SEFDASTROG A c 2B N ant k1 N ant k1 2 k w SEFDk N ant k1 wk SEFDk N ant for k - th baseline when w k 1 36 ASTRO-G astrometry • Antenna nodding: period <1 min (~15 sec on-source) • (effective) coherent integration is limited by (see, e.g. Proposal of VSOP-2 Project, 2003) 1. Atmospheric fluctuation (tint<90 min, for antenna nodding) 2. Systematic phase error due to uncertainty in ASTRO-G orbits (tint<90 min) • Large telescopes (e.g. NRO 45m) are also useful. • ASTRO-G baselines available after calibration of ASTRO-G’s complex gain. • News: HartRAO may be available at 22GHz. (sensitivity equivalent to Ceduna 25m?) 37 ASTRO-G (SEFD=5000 K)に対する感度 VERA 20m VLBA 25m NRO 45m NICT 34m ATCA SEFD [Jy] 1760 500 280 1300 88 (Tsys= 100K) (Tsys= 50K) 15s 256 MHz [mJy] 48 26 19 42 11 35 9 15s 31.2 kHz [Jy] 4.4 2.3 1.7 3.8 0.98 3.1 0.81 3.0 5.2 4.4 90m 31.2 kHz [Jy] 0.23 0.12 0.09 0.20 0.05 0.04 0.28 0.23 6x20m Mopra DSN 20m 70m Parkes Ceduna Hobart 70m 25m 26m 900 810 60 2500 1800 (Tsys= 150K) 0.17 33 58 49 0.16 位相準拠積分に使える参照電波源 7σ > 230(Parkes)-400 mJy メーザー源による逆位相補償の場合 7σ > 36 Jy 38 基線感度: 7σ > 2.0 Jy ASTRO-G (SEFD=8200 K)に対する感度 VERA 20m VLBA 25m NRO 45m NICT 34m ATCA Mopra DSN 6x20m 20m 70m Parkes Ceduna Hobart 70m 25m 26m SEFD [Jy] 1760 500 280 1300 88 810 (Tsys= 100K) (Tsys= 50K) 15s 256 MHz [mJy] 62 33 25 53 14 44 11 42 74 63 15s 31.2 kHz [Jy] 5.6 3.0 2.2 4.8 1.3 4.0 1.0 3.8 6.7 5.7 90m 31.2 kHz [Jy] 0.30 0.16 0.12 0.25 0.07 0.21 0.05 0.20 0.35 0.30 900 60 2500 1800 (Tsys= 150K) 位相準拠積分に使える参照電波源 7σ > 300(Parkes)-520 mJy メーザー源による逆位相補償の場合 7σ > 47 Jy 39 基線感度 7σ > 2.4 Jy ASTRO-G 基線群のみによる メーザーマッピング感度 (90 min) LBA full LBA nominal EAVN full ATCA, Mopra ATCA, Mopra VERA, KVN, DSN70m Parkes, Hobart NRO, NICT Parkes, Hobart, Ceduna, HartRAO Shanghai Ceduna, HartRAO Urmqui EAVN nomimal VERA, NICT Yamaguchi Shanghai Urmqui APT =EAVN nominal + LBA nomimal ASTRO-G SEFD =5000K [mJy] 73 85 69 85 61 ASTRO-G SEFD =8200K [mJy] 94 109 88 110 78 10-σ 検出レベル: 0.8 Jy (APT) ― 1.1 Jy (LBA nominal) 10-σ 検出レベル: 0.6 Jy (APT) ― 0.8 Jy (LBA nominal) 40 メーザー源フラックス密度の扱い • 典型的な水メーザースポットサイズ: ~1AU – 10 kpc 先で 100μas ⇒ ASTRO-G 基線での角分解能 – LMC&SMC以遠では分解されないとする – 10 kpc 以遠の銀河系内メーザー源: 相関フラックスは一律10%程度と仮定する (fakesat simulation より) • コヒーレンスロスによる相関フラックス低下 – Coherency: ρ > 0.8 を仮定 – 実質的なcoherence integration < 90 min (for ~300 min obs.) ⇒ASTRO-G 周回周期 (~6 hours) • LMC&SMCでは 0.8 Jy 以上のメーザー源がターゲット • MW(D>10 kpc)では 8.0 Jy 以上がターゲット 41 LMC & SMC の 水メーザー源 1 Jy 以上の 水メーザー源 14/ 18 in LMC 5/ 6 in SMC 42 ATCA K/Q reference source survey • instruments and observations • • • • • Project code: C2049 6 telescope @K-band 5 telescopes @Q band June 12 for ~8 hours for K–band June 13 for ~6 hours for Q-band, for ~3 hours for K-band CABB (Compact Array Broadband Backend) – 2 GHz band width, RCP&LCP, 2 IFs – 19 & 23 GHz or 43 & 45 GHz • 2 min/scan • 15 baselines (10 baselines) × 2ー3 scans for imaging • Source selection – – – – – AT20G (14 targets), 15 sources included in current survey Sydney University Molonglo Sky Survey (SUMSS) @0.84 GHz Parkes- MIT-NRAO Radio Survey (PMN) @4.85 GHz 106 targets at K-band 〜60 targets at Q-band from detected K-band targets 43 References for LMC&SMC (supplement) • 0530-727 0.21 Jy/beam@X (Ohja et al. 2005, ICRF) • 0530-727 J0529-7245 0.31 Jy@X 25-50Mlambda (0.55Jy) 0.5 Jy @20GHz nearest H2O maser: 05406-7111, 7.8 Jy, 1.78 deg away (Katayama&Imai 2008) • J0542-735 (Fey et al. 2004) 0.2 Jy (2.3GHz), 0.3 Jy (8.4GHz) nearest H2O maser: 05406-7111, 7.8 Jy, 2.37 deg away (Katayama&Imai 2008) • 0026-710 J0028-7045 0.09 Jy@X 25-50Mlambda 0.3 Jy @20GHz with S7, 7.4 Jy, 2.01 deg away (Katayama&Imai 2008) • 0424-668 J0425-6646 0.15 Jy@X 25-50Mlambda 0.2 Jy @20GHz • 0441-699 J0440-6952 0.23 Jy@X 25-50Mlambda (0.51Jy) 0.6 Jy @20GHz with HII-1186: 5.0 Jy, 1.34 deg away (Katayama&Imai 2008) with 04521-6928, 2.5 Jy, 1.08 deg away (Katayama&Imai 2008) with N113, 73.8 Jy, 2.87 deg away • 0517-726 J0516-7237 0.16 Jy@X 25-50Mlambda 0.07 Jy @20GHz • 0518-696 J0518-6935 0.04 Jy@X 25-50Mlambda 0.15 Jy @20GHz with N160A(30Dor), 3.7 Jy, 1.86 deg away, with N113, 30-80 Jy, 0.50 deg away • 0534-723 J0533-7216 0.06 Jy@X 25-50Mlambda 0.2 Jy @20GHz with 05406-7111, 7.8 Jy, • 0530-727 J0529-7625 0.31 Jy@X 25-50Mlambda 44 VSOP-2 astrometry requirement steps • Least requirement: successful astrometry with space mission for one source – Focused emission on the phase-referenced image (σ~10μas) – at least 4 epochs for a proper motion measurement • Official requirements: – Proper motion measurements for 9 regions at 5 epochs – Exploration of 30 Dor (N157A) at 5 epochs • Full requirements: two directions – Trial of trigonometric parallax measurements at 18 epochs – Increase in source number of proper motion measurements up to 19 sources 45 VSOP-2 target candidates in the Milky Way • Outer Galaxy in northern sky (Dkin>9 kpc): 7 sources in VERA target catalog (Nakanishi et al. 2009) • Outer Galaxy behind the Galactic Center: unknown number necessity of proper motion surveys in the southern sky (c.f. Hachisuka et al. 2009) e.g. IRAS 17599-2148, W31 (2), 01221-0010, 01222-0012, W33B, 01387+0028, W43(M3), 18479-0005, S76 W, W49N • Proper motions of the nearby Galaxy: M33, IC10 (Brunthaler et al. 2005) • Mira variables at the outer thick disk: unknown number necessity of water maser surveys towards the SiO maser sources (Aarao et al. 2008) • Maser astrophysics: e.g., W3(OH), W3 IRS5, Orion KL, W51 N&M • Stellar physics: e.g, WB724 (star formation), IRAS 18460-0151 (stellar jet) 46