Download First Generation Objects

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Radiative Feedback
on the formation of
first generation subgalactic objects
Hajime Susa
Rikkyo University
First Generation Objects



Predicted by CDM density Perturbation
Theory @10<z<30.
M>10^6 M_sun (Tvir>10^3 K)
Cooled by H2 lines and H-Lyα
Cooling Diagram (RO +H2)
3s
2s Cluster of Gals.
1s
Large Gals.
dwarf Gals ?
First Generation Objs.
1
2
3
4
5
6 7 8 9
10
1+ zvir
2
3
4
5
6 7 8 9
100
Cooling by H atom
Cooling by H2
First Generation
Subgalactic Objects
Nishi & Susa 1999
Substructure in Galactic Halo
Cluster Halo
5  1014 M
Galactic Halo
2  1012 M
Moore et al. 1999
20 times smaller than expected
Feedback
Cooling diagram of primordial gas
& SN disruption
100SN
Nishi & Susa(1999)
Primodial Virialized Gas
10SN
Cooling+SN disruption
1SN
M  10 M halos
8
merginally survive 100 SN
SN (Simulation)
Wada & Venkatesan 2003
z=10, 10^8 M_sun
1000 SN/Myr →disruption
100 SN/Myr →collapse induced
SN feedback


10^8 M_sun halos @z=10 seems to be
difficult to be destroyed soley by SN.
But more simulations are required to assess
the effects of SN feedback…
Impacts of UVB on GF

PHOTOIONIZATION



PHOTODISSOCOATION


Production of electrons : catalysts of H2 formation →
enhance the fraction of H2
Enhance the Compton cooling rate
Dissociation of H2 → No coolant
PHOTOHEATING



Keep the gas temperature 104-105 K
Photo-evaporation
Suppression of SF in gals.
Cooling and heating rates
Equilibrium temperature
is 104-105K
Dynamics of Galaxies
with Tvir < 104 K
are strongly affected.
Photoevaporation
Thoul & Weinberg 1996
Late Reionization, CDM density
perturbation, and Radiative cooling.....
If Z_reion=6, 1σ density
perturbations are not
prevented from forming
stars.
Blown away
by photo-evaporation
7
Early reionization (WMAP)
Spergel et al. 2003
 (z rec )  0.17  0.04
Instantaneous reionization:
z reion  17  3
Early Reionization, CDM density
perturbation, and Radiative cooling.....
If Z_reion=20, >2σ
density perturbations are
prevented from forming
stars.
Shaded ≒ Blown away
by photo-evaporation
20
Smaller scale sub-clumps

x
In hierarchical clustering scenario, small clumps
evolve faster than the parent system.
Method (RSPH)

SPH



Gravity



HMCS in University of Tsukuba (CCP)
GRAPE6, direct-sum
Radiation transfer of ionizing photons



Steinmetz & Muller 1993
Umemura 1993
Kessel-Dynet & Burkurt 2000
Nakamoto, Umemura & Susa 2001
Primordial chemistry & Cooling


Susa & Kitayama 2000
Galli & Palla 1998
Model of SF
1.T  5000 K
In order to evaluate the case of
maximal star formation rate, we assume
2. y H 2  5  104

3.
 200

4.   v  0

d * c* gas

,
dt
t ff
c*  1
Model of UVB
I 21
I 21
1  z  / 3 3
I 21 exp 12  3z 
1
I 21 0.01exp  3(17  z) 
I 21 0.01
3
5
1 z
Put a source outside the simulation box so that the
mean intensity is equal to above value at the center.
18
Minimally Required I21
y HI  103 ,   5
y HI  103 ,   1
y HI  0.1,   5
y HI  0.1,   1
再結合=光電離
I  L  n 0 (1  z ) krec
3
(1  y HI )2 hpl
3   
y HI
4s L
Typical Result (M=107Msun,Zc=10)
300pc
Maximally Star-forming model
2s
3
3s
2
M
 100
L
Vc=20 km/s
6
5
4
“ Evaporated ”
3
Vc=10 km/s
2
M d 108 M or
7
6
5
4
vrot d 20km/s
1s
3
Vc=5 km/s
2
6
>95% halos are
photo-evaporated.
6
5
4
3
6
7
8
9
10
2
Convergence
(# of particles and Softening )
N  217
N  215
N  217
N  215
N  214
N  213
N  214
N  213
Substructure in Galactic Halo
Cluster Halo
5  1014 M
Galactic Halo
2  1012 M
Moore et al. 1999
20 times smaller than expected
Kravtsov et al. (2004)
~10% of halos with 10^8-10^9 M_sun halos are much more massive in the past.
Evidences of invisible substructures
by gravitational lensing


Chiba (2002)
Dalal & Kochanek (2002)
Consistent with the CDM N-body simulations
Internal radiative feedback


Kitayama, Yoshida, Susa, Umemura 2004
single POPIII star at the center of the cloud
ガスの消失
ガスは失われず
ガスはほぼ完全に消失
ただしガスは星が消えると10^7 yrくらいかけて戻ってくる。
原始組成からできる星の質量




本当のFirst Stars → Very Massive ?
再電離を生き残るT_vir>10^4 K くらいの雲→
電離度高
電離度高→H2が多量にできる
H2が多量にできるとHDが多量にできる⇒温度
が下がって分裂の質量が少し100Msunよりだい
ぶ小さくなる(F.Nakamura)。
水素分子の過剰生成
Susa et al. 1998
衝撃波の後面で再結合
の遅れ
およそ50km/s以上の
衝撃波では水素分子量
がa few ×10^{-3}程度
数万度以上の
ビリアル温度を持つ雲では
この過程が起きる。
Fragment mass
Nakamura & Umemura 2002
Summary




3D RHD の方法で早期再電離のモデルの計算を
行った。
20km/s以下のビリアル温度を持つ天体の形成は、
早期再電離モデルでは著しく阻害される。
内部のPOPIII星からのradiative feedbackの影響も
大きく、10^7Msun以下の天体は電離による加熱で
ガスを失う。
したがって星団としての銀河が誕生するのはビリア
ル温度が10^4K以上の天体と考えられるが、それら
の天体ではたとえメタルがほとんどなくても星の質量
は少し下がる可能性がある。
Related documents