Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Neutrinos Theory ~ Carlos Pena Garay IAS, Princeton March 11, 2005 Benasque References Neutrino Unbound http://www.nu.to.infn.it/ Massive Neutrinos : Dirac n(p,h) n(p,-h) CPT Boost, if m ≠ 0 Boost, if m ≠ 0 n(p,-h) n(p,h) CPT Standard Model + right handed g 0 Ln in i n i n i Z n i 2 cos W g li U ijW n i h.c. 2 cos W m in in i h.c. ... yv mn n (v R v L v L v R ) 2 1 PR , L (1 5 ) 2 Standard Model + right handed g 0 Ln in i n i n i Z n i 2 cos W g li U ijW n i h.c. 2 cos W m in in i h.c. ... yv m in in i (v R v L v L v R ) 2 1 PR , L (1 5 ) 2 Parameters : Dirac mi 0 c13 0 s13e iδ c12 s12 0 U e1 U e 2 U e3 1 0 U i U μ1 U μ 2 U μ 3 0 c23 s23 0 1 0 s12 c12 0 U U U 0 s c s e iδ 0 c 0 0 1 τ2 τ3 23 23 13 τ1 13 Exercise m0 Δm 0 2 ΔM 0 0 ij 2 2 0 Wave packets : Neutrino osc. i ( x, t ) dp 2 p ( p pi ) 2 e 4 2p e i ( px Ei t ) Relativistic neutrinos : Pv n ~ U *iU iU *jU j e 4 E If losc 2 m lcoh 2 2 L2 ( m ji ) i L 2 2 32 E x 2E m 2ji e E2 4 2 x Osc. 2 m if losc L average oscillatio ns Same result if lcoh L Incoherent propagatio n Size of the wave packet Coherent neutrino emission in plasma : Interrupted by e.m interactions of the source particles (pressure broadening) x ~ l ~ v 1 3T 2 2 2 N 2Z1 Z 2 e 3T m 2 3/ 2 ~ 1.4 1017 T m MeV Km 10 12 10 11 Km (Sun) N Z12 Z 22 3 cm Reactor : e.m. interactions of produced e 10 9 Km (Reactor) Accelerator : time scale of weak interactions ~ c 10 3 Km (Accelerat or) Matter effects Only the difference of potential is relevant Net effect : H int GF ve (1 5 )ve d 3 pe f(E e , T) e (1 5 )e 2GF N e 2 l matt 2 2GF N e e 0 e N e e i e N e v i Some Neutrino Sources 4 E l osc 2 m Solar 10 - 103 Km Snova 10-11 - 10 7 Km React 1, 10 2 Km l coh E2 4 2 x 2 m l e matt 2 2GF N e 105 107 Km 10 2 Km 10-8 10 4 Km 10 10 Km 106 , 108 Km 10 4 Km Atmos 10 - 105 Km 1014 - 10 22 Km 103 - 10 4 Km Accel 10 2 - 103 Km 1016 - 1018 Km 10 4 Km ne Neutrino spectrum 1% Solar 10% 10% 1.5% P(n e νa ) P(Δ 2 msol 20% 16% ? , sol ) Atmospheric P(n ν ) P(Δ 2 M ATM , ATM ) Reactor : …,Chooz/Palo Verde,… P( νe νe ) P( Δ 2 M atm ,chooz ) R 1.01 2.8% 2.7% Reactor : …,KamLAND P( νe νe ) P( Δ 2 msun , sun ) Accelerator : K2K 2 P(n ν ) P(ΔM ATM , ATM ) LSND, Miniboone n ne Proton beam producing N (n e ) 87.9 22.4 6.0 d 30m 20MeV E 60MeV LMC n n e 8GeV Booster magnetic horn decay pipe 25 or 50 m and target 0.5GeV E 1GeV 450 m dirt d 500m detector The Neutrino Matrix :SM + n mass ALL oscillation neutrino data BUT LSND 3 ranges: | U e1 | | U e 2 | | U e3 | 0.79 0.88 0.47 0.61 0.00 0.20 | U i | | U μ1 | | U μ 2 | | U μ 3 | 0.19 0.52 0.42 0.73 0.58 0.82 | U | | U | | U | 0.20 0.53 0.44 0.74 0.56 0.81 τ2 τ3 τ1 Δm 2 7.3 5 2 9.3 (8.2) 10 eV ΔM 2 1.6 3 2 3.6 (2.2) 10 eV 0.28 tan 212 0.60 (0.39) 0.51 tan 2 23 2.1 (1.0) sin 2 13 0.041 (0.005) The Neutrino Matrix : SM + n mass ALL oscillation neutrino data BUT LSND 1 (1 ) 2 1 | U i | ~ (1 cos ) 2 1 (1 cos ) 2 1 ranges: 1 (1 ) 2 1 (1 cos ) 2 1 (1 cos ) 2 0.23 0.04 0.00 0.06 0.12 1 cos 1 1 (1 ) 2 1 (1 ) 2 SM + n mass Neutrinos: Cosmological dark matter to be discovered If lowest mass is negligible, and normal hierarchy n 0.0009 0.0001 If highest mass is 1 eV n ~ 0.03 (1 eV) Plan I. Neutrinos as Dirac Particles II. Making Neutrinos III. Neutrinos as Majorana Particles Neutrino Sources Reactor Accelerator Cosmic Neutrino Background 56 cm-3 at 1.9K (0.17 meV) Possible mechanical effect : torque of order GF if target and neutrino background are polarized (Stodolsky effect) and net neutrino-antineutrino asymmetry Still far from observability, awaiting for future technology Neutrinos from Thermal Plasma Photo (Compton) Bremsstrahlung Plasmon decay Pair annihilation Solar (thermonuclear) Neutrinos Ga Cl SK, SNO Thermonuclear Neutrinos Geoneutrinos Site U (106 cm-2s-1) Th (106 cm-2s-1) Kamioka 3.7 3.2 GS 4.2 3.7 Sanduleak 69 202 Supernova 1987A 23 February 1987 Tarantula Nebula Large Magellanic Cloud Distance 50 kpc (160.000 light years) Stellar Collapse and Supernova Explosion Newborn Neutron Star ~ 50 km Neutrino Cooling Proto-Neutron Star r rnuc 3 1014 g cm3 T 30 MeV Collapse Explosion (implosion) Neutrino Signal of Supernova 1987A Kamiokande (Japan) Water Cherenkov detector Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union) Clock uncertainty +2/-54 s Within clock uncertainties, signals are contemporaneous Limits on Supernova Relic Neutrinos Super-Kamiokande : n e 1.2 cm-2s-1 (90%CL) 19.3 MeV Ando et al (2004) Atmospheric Neutrinos Undiscovered neutrino sources n n + Sources above 10GeV GRBs? by Eli Waxman Sources above 10GeV 90% CL upper limits in 10-8 cm-2s-1 for E-2 spectrum from AMANDA II (2000-2002) : E-2.7 E-3.0 Flavor ratio for far sources We start with 1 : 2 : 0 Decoherenc e : wave packets separate n i (n i ) | U ei |2 2 | U i |2 23 2 , 13 0 ( cos 2 12 sin 2 12 , sin 2 12 cos 2 12 , 1 ) We end with 1 : 1 : 1 in mass basis (present precision ~ 10%) We end with 1 : 1 : 1 in flavor basis Man-made Neutrino Sources : Reactors Goal : Measure 13 2 2 1 . 27 m L 1 . 27 m 2 4 2 13 12 L Pee 1 sin 213 sin cos 13 sin 212 sin En En Man-made Neutrino Sources : Accelerator • conventional beams / superbeams • -beams • neutrino factories