* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Andrea Santangelo
Survey
Document related concepts
Transcript
“New Views on Accreting X-ray Pulsars, a brief review of recent results” Andrea Santangelo (…and the Magnet Collaboration) Institut für Astronomie und Astrophysik Kepler Center for Astro and Particle Physics Karls-Eberhard-Universität Tübingen Tokyo 01.12.2010 MAXI International Symposium Andrea Santangelo, IAAT KC-Tü Magnet Collaboration … A. Santangelo, D. Klochkov, V. Doroshenko, D. Müller, R. Doroshenko, R. Staubert, M. Sasaki (IAAT), J. Wilms, L. Barragán, T. Dauser, I. Kreykenbohm, J. Schmid, F. Schwarm (ECAP), G. Schönherr (AIP), I. Caballero (Saclay), C. Ferrigno, N. Mowlawi (ISDC), P. Kretschmar (ESAC), V. McBride (Soton), U. Kraus (Uni Hildesheim), O. Nishimura (Nagano), K. Postnov, N. Shakura (SAI), K. Pottschmidt (CRESST/UMBC/GSFC), R. Rothschild, S. Suchy (UCSD), L. Sidoli (INAF Milano) … Partial list … Andrea Santangelo, IAAT KC-Tü Liu et al. A&A, 2000, 2005 X-ray Binaries with a NS: Pulsars? B 10 G 12 Most of them are in HMXRB A few LMXRB (Her X-1, 4U1626-67, GX1+4) Mass Transfer from the Normal to the compact star Wako 10.12.2009 Courtesy of Scientific American Seminar at RIKEN Andrea Santangelo, IAAT KC-Tü Accretion Roche Lobe Overflow Wind Accretion ( r ) const GM1 GM 2 1 2 ( r ) r r r1 r r2 2 Lubov & Shu, 1975 Ý 1057 MSun yr1 M v 103 km s1 Davidson & Ostriker, 1973 Andrea Santangelo, IAAT KC-Tü SG/X-ray Binaries Wind Accretion GMm 1 2 2 m v w v NS r 2 racc 2GM 2 2 v w v NS Bozzo+, 2008 SFXT Interaction between the inflow wind matter and the NS magnetosphere: different regimes at different luminosities Kreykenbhom, 2004 Andrea Santangelo, IAAT KC-Tü Interaction disk/wind magnetosphere Details of matter transfer are not understood Andrea Santangelo, IAAT KC-Tü Ghosh & Lamb, 1978, 79 In the Boundary Layer disk is not longer keplerian GM k ( r ) 3 r PMagn B2 2 8 8r 6 At the Boundary Layer disk is disrupted. The plasma is forced to follow the field lines and matter is funnelled in accretion column onto the Neutron Star Magnetic Poles Kuster, 2003 Andrea Santangelo, IAAT KC-Tü 1 2 What is the Corotation Radius ? At the Corotation Radius the angular velocity of the magnetosphere equals the keplerian velocity of the Disk. rH rco 1 7 M 4 7 Ý162 730 rHDisk 5.2 10 8 M cm M Sun rH 3 10 Km 3 Andrea Santangelo, IAAT KC-Tü Not so simple: Open Field lines Lovelace et al. 1995 Andrea Santangelo, IAAT KC-Tü Outflows and conical winds MHD simulations Romanova et al., 2009 Andrea Santangelo, IAAT KC-Tü Do we have evidence of these outflows? Andrea Santangelo, IAAT KC-Tü Continuous Monitoring of Pulse Period, Pdot, Lx P Based on Swift/BAT data Klochkov +, 2009 Time . P Her X-1 Andrea Santangelo, IAAT KC-Tü Strong Spin-down episodes Outflow episodes! Andrea Santangelo, IAAT KC-Tü Other evidence: decay of Porb Klochkov +, 2008; Staubert+, 2009 A decay of the Orbital Period has been measured 11 1 Ý POrb 4.85 10 dd Lx 2 10 37 erg s1 It cannot be reconciled with a conservative scenario Matter is ejected! In strong spin-down episodes the spin-down power is used to expel matter from the inner disk radius Ji et al., 2009 (Chandra) Andrea Santangelo, IAAT KC-Tü Surprises from wind/magnetosphere interactions? Andrea Santangelo, IAAT KC-Tü The strange case of an old friend GX 301-2 Doroshenko+, 2010 Why is GX 3012 so slow? Wako 10.12.2009 Seminar at RIKEN Andrea Santangelo, IAAT KC-Tü Torque Balance d I K K dt Accelerating Torque depends on accretion rate, wind velocity through kw The Spin frequency of the source is determined by accelerating and braking torques Davies +, 1979 2 Ý K Mkw RA orb Decelerating Torques Davidson & Ostriker, 1973 Turbolent Viscosity Ilarionov & Kompaneets, 1990 Compton Heated Outflows Andrea Santangelo, IAAT KC-Tü Assuming equilibrium… kw~0.25-1 Andrea Santangelo, IAAT KC-Tü Wako 10.12.2009 Doroshenko et al., 2009 Seminar at RIKEN CGRO-BATSE Andrea Santangelo, IAAT KC-Tü Wako 10.12.2009 Seminar at RIKEN Andrea Santangelo, IAAT KC-Tü GX 301-2 a hidden “magnetar”? Not an unique case… Andrea Santangelo, IAAT KC-Tü Vela X-1 (Ps ~283.5 s)_ Doroshenko 2010a, (submitted) Kreykenbohm+, 2008, Inoue+ 1984 B 101314 G Other evidence from: QPOs, Noise Power Spectrum Flux drops dramatically OFF states (Suzaku obs.) Propeller regime due to wind density fluctuations of clumpy winds? Gogus+, 2010 in GX 301-2 Andrea Santangelo, IAAT KC-Tü Peculiar hard emission at lower luminosity (Doroshenko +, 2010b, in prep.) 20 40 keV The source still pulsates OFF state Accretion though at much lower luminosity is there! We possibly observe the inhibition of the column at lower luminosities: radiation comes from the polar cap In “the gated accretion” scenario of Bozzo+ (2008), we might see here the transition to KH Instab. Pulse profile changes at hard energies B 2 10 G 13 Andrea Santangelo, IAAT KC-Tü Emission from the accretion column Andrea Santangelo, IAAT KC-Tü Basko & Sunyaev, 1976 Accretion Columns Kuster, 2003 9...11 1 Ý M 10 M Sun yr B 10 12 13 G v 0.6 0.8 c Solid Column L LEdd Hallow Cylinder Andrea Santangelo, IAAT KC-Tü Transition between two accretion regime depending on the luminosity: Eddington vs. Sub-Eddington L 10 erg/sec 37 Right) High accretion rate: shock is formed, plasma is decelerated to subsonic speed and heated. The Plasma then sinks to the NS surface. Emitted photons can only escape perpendicularly to the column forming a wide Fan beam. Left) Lower accretion rate No shock is formed, plasma is decelerated onto the neutron star surface by Coulomb collisons; photons are generated by Bremsstrahlung and Compton Cooling. They can escape along the accretion column, generating a pencil beam Wako 10.12.2009 Kretschmar, 1996 Harding, 1994 Seminar at RIKEN Andrea Santangelo, IAAT KC-Tü Cyclotron Lines Electrons in the magnetosphere plasma move helicodally along the B field lines: their motion perpendicularly to the B field is quantized in the Landau levels mc 2 2 n B ωn mc 2 For B<< Bcr eB ωc γmc Bcrit sin 2 θ sin 2 θ 1 1 1 z m 2c 3 Bcr 4.14 10 13 G e ωn nωc E e ,c 11.6 B12 keV Equispaced 12 B in units of 10 Gauss Andrea Santangelo, IAAT KC-Tü Cyclotron lines as absorption lines Electron is excited to the n Landau level Wako 10.12.2009 Lifetime is short De-excitation to ground state via single or multiple photon emission Seminar at RIKEN Mean free path is short, quasi instantaneous recapturing of the Andrea Santangelo, photon IAAT KC-Tü Can we probe these two regimes Using Cyclotron lines… Wilms+, 2010 + GX 304-1 ~54 keV P13 Andrea Santangelo, IAAT KC-Tü Do cyclotron lines trace the B field of the Neutron Star? • Do cyclotron lines trace the B field of the NS? • How the energy of the line is related to the luminosity ? Do we observe a change of regime around 1037 ergs/sec ? Anticorrelation ? HM ? Correlation ? M col H ? Ý M Andrea Santangelo, IAAT KC-Tü Mihara+ 2007, Nakajima 2008 Andrea Santangelo, IAAT KC-Tü Correlation or Anti-correlation? Caballero et al., 2007, 2009 A0535+26 Tsygankov et al., 2006; 2010 Mowlavi et al., 2006 V0332+53, Outburst 2005 Anti-correlation is clearly Wako 10.12.2009 observed Staubert et al., 2007 Her X-1, 5 years of data Correlation is clearly observed; sub-Eddington! Andrea Santangelo, IAAT KC-Tü New Studies using pulse to pulse variability… Andrea Santangelo, IAAT KC-Tü Pulse to pulse variability…(Klochkov+, P23) light curve repeated pulse profile PCA cts/s/PCU (~3-30 keV) V0332+53 Time in days Andrea Santangelo, IAAT KC-Tü pulse flux bins PCA cts/s/PCU (~3-30 keV) Strong spectral variability Time in days Andrea Santangelo, IAAT KC-Tü Example: X0115+63 Klochkov+ 2010 (in prep.) Spectral variability with the single pulse amplitude With increasing pulse amplitude, the power-law becomes steeper, the cyclotron line shifts towards lower energies Andrea Santangelo, IAAT KC-Tü Dependence of spectral parameters on pulse height: summary “negative pulsars” “positive pulsars” V0332+53 X0115+63 Her X-1 A0535+26 - flux ? - flux -flux ? ? ? We found two types of spectral dependencies on the single pulse flux. We interpret them as an indication of two distinct Santangelo, accretion regimes (poster by D. Klochkov et al.) Andrea IAAT KC-Tü Again instabilities… Andrea Santangelo, IAAT KC-Tü A0535+26 (2005 Outburst) Caballero + 2007, 2008 Wako 10.12.2009 Seminar at RIKEN Andrea Santangelo, IAAT KC-Tü Wako 10.12.2009 Seminar at RIKEN Andrea Santangelo, IAAT KC-Tü Wako 10.12.2009 Seminar at RIKEN Andrea Santangelo, IAAT KC-Tü A question remains… is the cyclotron line tracing the B field of the NS (in systems like GX 301-2 and Vela X-1)? Andrea Santangelo, IAAT KC-Tü Doroshenko et al., 2009 Solution of the contradiction? The Cyclotron lines traces the field of the production site and this could be located at the top of the column L ~ 2 T 4 SB EDD 2Rsin H H ~ 10 30 km Basko & Sunyaev,1976 high columns can be predicted Andrea Santangelo, IAAT KC-Tü Formation of the spectra is very complex… Andrea Santangelo, IAAT KC-Tü The continuum? White+, 1983 POHEI (E) = Ea E<Ecut Eaexp(-(E-Ecut)/Ef)) E>Ecut 1 FDCO( E ) E E cut Tanaka, 1986 1 exp( ) E NPEX ( A1 E Mihara+, 1995 a 1 A2 E a 2 )e E kT ( E o( E ))e 2 2 E kT Approximates thermal comptonization Sunyaev and Titarchuk, 1980 Segreto, 2001 Andrea Santangelo, IAAT KC-Tü Becker & Wolff, 2005a,b and 2007 Physical Models (high luminosity) • Accretion mound produces soft X-rays via bremsstrahlung • X-rays are up-scattered via bulk motion comptonization and diffuse through the walls of the columns • Cyclotron emission occurs together with bbody emission from a thermal mound A Radiative shock dominates the formation of the emitted continuum Limited to COLUMN! Andrea Santangelo, IAAT KC-Tü Ferrigno et al., 2009: Model in XSPEC! A quantitative attempt: 4U 0115+634 Thermal and bulk Comptonization of Cyclotron emission. Thermal Comptonization of 0.5 keV BB Gaussian to correct the rough modelling Cyclotron emission is concentrated around the peak. Thermal comptonization is almost constant Andrea Santangelo, IAAT KC-Tü Ferrigno et al., 2009 4U 0115+634 Emission Geometry Beamed High Energy emission from the column (Fan beam) Low Energy Diffused Halo producing a fan component Analysis is being extended to other sources like 4U1907+67, Cen X-3, …(Ferrigno et al. 2010) Magnetic field of Cyclotron emission and of absorption line forming region are different! Andrea Santangelo, IAAT KC-Tü Light Bending and Geometry Kraus, 2003, 2010; Sasaki 2010; Caballero 2010 Andrea Santangelo, IAAT KC-Tü Kraus et al., 2010 Beam Pattern: three components Reprocessed radiation in the accretion stream Column component Low Energy Diffuse Halo Component Emission components? • Isotropic column emission • Beamed emission Andrea Santangelo, IAAT KC-Tü Conclusions • Progresses on Accreting Pulsars study have been dramatic in the last few years • Discovery of outflows (in Her X-1) • Pre-outburst flares and magnetospheric instabilities in A0535+26 • Evidence of magnetar-like sources in Binary systems (?) • A “new” technique: Pulse to pulse variability • Modelling of the physics of the emission of continuum and of cyclotron line profiles (Not discussed here!) • Modelling of Pulse Profiles (Not discussed here!) • Eventually all this greatly improved our understanding on: Emission processes of Geometry of the pulsed components Plasma Parameters spectral formation …of the line …B, T,Andrea tau, etc… …spectral Wako 10.12.2009 reprocessing Seminar at RIKEN Santangelo, forming region IAAT KC-Tü Thanks for listening Andrea Santangelo, IAAT KC-Tü