Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Using e-Science to probe structure and bonding in metal complexes: Database mining and computation Jonathan Charmant, Frederik Claeyssens, Natalie Fey, Mairi Haddow, Stephanie Harris, Jeremy Harvey, Tom Leyssens, Ralph Mansson, A. Guy Orpen and Athanassios Tsipis CombeDay 2005 Southampton Reactivity e-Science Properties Structure Metal-ligand binding Cl P + Cl Ru Cl P Cl Ru L L L= L= N •• N P E = 23.6 kcal/mol E = 27 kcal/mol Tsipis, Orpen and Harvey, Dalton Trans. submitted Metal-ligand binding 2 Database mining: correlation between: Oxidation-Reduction and M–P–X angle and P–X distance Cause: π back-bonding? Leyssens, Orpen, Peeters and Harvey, to be submitted Metal-ligand binding: a systematic approach He8 steric probe [Cl3PdP(Me)2(CF3)]- 61 ligands, ca. 10 calculations on each Ligand Knowledge Base Map of Chemical Space Locate unusual ligands: 3 Cl3 Principal Component 2 2 (CF3)3 HCl2 (C6F5)3 H2Cl (3,5-CF3Ph)2 MeCl2 Ph2Me O P O O Me 1 Me(CF3)2 H3 H2F F3 (o-tol)3 (p-CF3Ph)3 (pyr)3 (NC4H4) Me2Cl Me2CF3 PhPyr2 (OCH2)3CMe Ph2Pyr Ph(o-tol)2 (p-ClPh)3 (o-OMePh)3 Ph(o-(OMe)Ph)2 Ph2(o-tol) Ph2(o-(OMe)Ph) (p-FPh)3 Ph3 Ph2Cy (m-tol)3 PhCy2 (p-MePh)3 (p-MeOPh)3 Ph2Et 0 (p-Me2NPh)3 PhMe2 Bz3 PhEt2 (OPh)3 HF2 tBu3 NR2 tBu2Me adamphos MeF2 Me2F -1 (OEt)3 (OMe)3 (NH2)3 OR Bu3 Et3 iPr3Cy3 Pr3 tBuMe2 asym Me3 phobane (NMe2)3 (Pip)3 (NC5H10) Hal Ar (NC4H8)3 -2 R -3 -2 -1 0 1 Principal Component 1 2 3 Model Building Fey, Tsipis, Harris, Harvey, Orpen & Mansson, to be submitted • Predict experimental data from calculated variables. – Multiple linear regression: Solid State Rh-P Distance (Rh(I), CN=4) Tolman Electronic Parameter 2120 2.425 2110 predicted predicted 2100 2090 2080 2.375 2.325 2070 2060 2050 2050 2.275 2060 2070 2080 2090 experimental 2100 2110 2120 2.275 2.325 2.375 experimental 2.425 Adding value to the structural database Query Geometry Library for User-Defined Fragment retrieval of matching data Output of Statistical Data apply outlier criteria Outliers Fey, Harris, Harvey and Orpen, to be submitted DFT geometry optimisation Optimised Geometries compare with crystal structures Crystal Structure and DFT agree Crystal Structure and DFT disagree Adding value to the structural database – 2 Conclusions • Structural database is full of data • Data Mining already known to yield valuable insight • Combine database with computation to yield more insight • Probe structure and reactivity of individual species • Generate ligand knowledge base • Probe structural trends and outliers