Download Quantum Metrology for Dynamical Systems

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Quantum Metrology for Dynamical Systems
∗
Mankei Tsang
Department of Electrical and Computer Engineering
Department of Physics
National University of Singapore
[email protected]
http://mankei.tsang.googlepages.com/
Feb 27, 2014
∗
This material is based on work supported by the Singapore National Research Foundation Fellowship (NRF-NRFF2011-07).
1 / 32
Quantum Limits to Classical Force Detection
■
■
■
■
■
Caves et al., “On the measurement of a weak classical force coupled to a quantum-mechanical
oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341 (1980).
Yuen, “Contractive States and the Standard Quantum Limit for Monitoring Free-Mass
Positions,” Phys. Rev. Lett., 51, 719-722 (1983).
Caves, “Defense of the standard quantum limit for free-mass position,” Phys. Rev. Lett., 54,
2465-2468 (1985).
Ozawa, “Measurement breaking the standard quantum limit for free-mass position,” Phys. Rev.
Lett., 60, 385-388 (1988).
Braginsky and Khalili, Quantum Measurement (Cambridge University Press, Cambridge, 1992).
2 / 32
Quantum Optomechanics
Brooks et al., Nature 488, 476 (2012)
Safavi-Naeini et al., Nature 500, 185
(2013)
Purdy et al., PRX 3, 031012 (2013)
3 / 32
Detection is Binary Hypothesis Testing
LIGO, Hanford
Rugar et al., Nature 430, 329 (2004).
4 / 32
Statistical Binary Hypothesis Testing
■
■
■
signal present: P (Y |H1 ), signal absent: P (Y |H0 ).
Type-I error probability (false-alarm probability):
P10 = Pr H̃(Y ) = H1 H0
Type-II error probability (miss probability):
P01
■
Average error probability:
= Pr H̃(Y ) = H0 H1
Pe = P10 P0 + P01 P1
■
(1)
(2)
(3)
Figure of merit: error exponent − ln Pe , usually − ln Pe ∝ Signal-to-Noise Ratio
5 / 32
Quantum Detection Bounds
■
■
C. W. Helstrom, Quantum Detection and Estimation Theory, (Academic Press, New York,
1976).
Quantum hypothesis testing:
Pr(Y |H0 ) = tr[E(Y )ρ0 ],
■
p
1
1
P0 P1 F ≥ min Pe = (1 − ||P1 ρ1 − P0 ρ0 ||1 ) ≥
1 − 1 − 4P0 P1 F ≥ P0 P1 F.
E(Y )
2
2
√
■
(4)
Quantum bounds (Helstrom, Fuchs/van de Graaf):
p
■
Pr(Y |H1 ) = tr[E(Y )ρ1 ].
A† A,
||A||1 ≡ tr
For pure states,
p√
√
ρ1 ρ0 ρ1
2
.
||P1 ρ1 − P0 ρ0 ||1 =
p
1 − 4P0 P1 F ,
F ≡ tr
F = |hψ0 |ψ1 i|2 ,
(5)
(6)
and there exists a POVM such that the fidelity bound is attained.
Error exponent − ln PeHelstrom ≈ − ln P0 − ln P1 − ln F , fidelity exponent − ln F is a figure of
merit.
6 / 32
Fidelity and Quantum Fisher Information
■
■
Let F (x, x′ ) = |hψx |ψx′ i|2 .
Near F = 1,
1X
F (x, x + ∆x) ≈ 1 −
Jjk (x)∆xj ∆xk .
4 j,k
■
J(x) is the quantum Fisher information, determines quantum Cramér-Rao bound
mean-square error covariance ≥ J −1 .
■
■
■
■
■
(7)
(8)
Once we know F (x, x′ ), getting J(x) is easy, but not vice versa.
For detection, we want Pe ≪ 1, F ≪ 1, J is irrelevant
Pure-state Helstrom bound is attainable, low F means achievable low Pe .
For estimation, QCRB may not be attainable, high J doesn’t necessarily mean low error
QCRB useful as no-go theorem
7 / 32
Helstrom Bound for Waveform Detection
■
How to apply Helstrom’s bound to waveform detection?
■
Larger Hilbert space: Purification, deferred measurements:
■
Unitary discrimination:
ρ0 = U0 |ψihψ|U0† ,
Z
1
dtH0 (t) ,
U0 = T exp
i~
ρ1 = U1 |ψihψ|U1† ,
Z
1
U1 = T exp
dtH1 (x(t), t) ,
i~
2
†
F = hψ|U0 U1 |ψi .
(9)
(10)
(11)
8 / 32
Quantum Optics 101
■
Interaction picture:
1
U0† U1 = T exp
i~
■
Z
dtHI (t) ,
HI (t) ≡ U0† (t, t0 ) [H1 (t) − H0 (t)] U0 (t, t0 ).
Suppose H1 − H0 = −qx(t),
Z
2
1
dtx(t)qI (t) .
F = T exp
i~
■
■
(12)
Assume qI (t) has linear dynamics (H0 quadratic with respect to Z, a vector of canonical
coordinate operators),
Z
qI (t) = g(t, t0 )Z + dt′ g(t, t′ )J(t′ ),
Cascading displacement operators:
Z
i
i
1
T exp
dtx(t)qI (t) ≈ eiφ e− ~ dtx(tN )g(tN ,t0 )Z . . . e− ~ dtx(t1 )g(t1 ,t0 )Z
i~
Z
′
i
dtx(t)g(t, t0 ) Z
= eiφ exp −
~
(13)
(14)
(15)
(16)
9 / 32
Analytic Expression
■
■
Characteristic function is Fourier transform of Wigner:
D
E Z
e−iκZ =
dzW (z) exp(−iκz).
Assume initial state (light, mechanical) is Gaussian, Fourier transform of W (z) is Gaussian:
1
F = exp − 2
~
■
■
(17)
Z
dt
Z
dt′ x(t) : ∆qI (t)∆qI (t′ ) : x(t′ ) .
(18)
Trade-off between detection accuracy and quantum position localization
In optomechanics,
p
dq
=
,
dt
m
dp
2
= −mωm
q + κa† a,
dt
γ
da
√
= − a − iω0 a + γAin ,
dt
2
(19)
h: ∆qI (t)∆qI (t′ ) :i is a function of input optical state and dynamics.
10 / 32
Standard Quantum Limit
Phase Homodyne
11 / 32
Russian Referee?
Tsang and Nair, “Fundamental quantum limits to waveform detection,” PRA 86, 042115 (2012).
12 / 32
Ponderomotive Squeezing
Brooks et al., Nature
488, 476 (2012)
Safavi-Naeini et al., Nature 500, 185 (2013)
Purdy et al., PRX 3, 031012 (2013)
13 / 32
Overcoming SQL
Positive-mass oscillator
and negative-mass oscillator
Dynamical Pairs
Conjugate Pairs
■
■
■
■
■
Kimble et al., PRD 65, 022002 (2001)
Quantum Noise Cancellation: Tsang and Caves, PRL 105, 123601 (2010)
Quantum-Mechanics-Free Subsystem: Tsang and Caves, PRX 2, 031016 (2012)
Backaction evasion
Undo ponderomotive squeezing
14 / 32
Homodyne is Suboptimal
■
■
Suppose input field is in coherent state, output is also coherent state after QNC.
Coherent-state discrimination:
QNC
QNC
H0 : |Aout [x(t) = 0]i,
■
■
H1 : |Aout [x(t)]i.
(20)
Figure of merit: error exponent − ln Pe
− ln PeHomodyne
1
Helstrom
− ln Pe
≈
2
(21)
Phase Homodyne,
No Backaction Noise
Optimal measurement can save half of optical
power
15 / 32
Quantum Optimal Measurements
■
Kennedy: null the field for H0 :
H0 : |0i,
■
H1 : |Aout [x(t)] − Aout [0]i,
(22)
P01 = |h0|Aout [x(t)] − Aout [0]i|2 = F.
(23)
Error probabilities:
P10 = |hN 6= 0|N = 0i|2 = 0,
Photon Counter
nonzero count: choose
zero count: choose
− ln PeKennedy ≈ − ln PeHelstrom − (− ln P0 )
■
(24)
Dolinar?
16 / 32
Stochastic Waveform Detection
■
■
What if we don’t know x(t) exactly?
Fidelity upper/lower bounds still hold:
F =
■
■
2
Z
1
dtx(t)qI (t) dP [x(t)] T exp
i~
Coherent state under H0 , mixed state under H1 :
Z
H0 : |Aout [0]i,
H1 :
dP [x(t)]|Aout [x(t)]ihAout [x(t)]|.
(25)
(26)
Kennedy receiver still has near-optimal error exponent:
Z
H0 : |0i,
H1 :
dP [x(t)]|Aout [x(t)] − Aout [0]ihAout [x(t)] − Aout [0]|,
P10 = 0,
■
Z
P01 =
Z
dP [x(t)] |h0|Aout [x(t)] − Aout [0]i|2 = F.
M. Tsang and R. Nair, PRA 86, 042115 (2012).
(27)
17 / 32
Proof-of-Concept Experimental Proposals
18 / 32
Squeezed Input State
■
Caves, PRD 23, 1693 (1981).
GEO 600: Nature Phys. 7, 962 (2011)
■
LIGO Hanford: Nature Photon. 7, 613 (2013)
■
19 / 32
Squeezed Input State
■
Squeezing increases h: ∆q(t)∆q(t′ ) :i without increase in optical power
Phase Homodyne,
No Backaction Noise
■
■
■
LIGO nowhere near SQL yet
Optimal detection for squeezed state?
Fundamental quantum limit with respect to optical power?
◆
◆
Optical loss: noisy quantum metrology
Heisenberg limit?
20 / 32
Open Systems
■
Larger Hilbert space: bounds assume everything can be measured.
■
For open systems, bounds are still valid but not tight
p√
√ 2
ρ1 ρ0 ρ1 , hopeless to compute
Mixed states: ||P1 ρ1 − P0 ρ0 ||1 , F = tr
Modified purification:
■
■
2
†
F = max hψ|U0 UB U1 |ψi
UB
■
■
■
Choose UB to tighten lower bound.
Hard to find optimal UB , lower bound may not be achievable, useful as no-go only.
Escher et al., Nature Phys. 7, 406 (2011) (quantum Fisher information)
(28)
21 / 32
Single-Mode Optical Phase Detection
■
Pure state:
2
X
2
P (n) exp(inφ) .
F = |hψ| exp(inφ)|ψi| = (29)
n
■
■
Characteristic function (Fourier transform)
Quantum Fisher information for QCRB on phase estimation:
F ≈ 1 − h∆n2 iφ2 ,
■
J = 4 ∆n2 .
e.g. coherent state:
Fcoh
φ
= exp −hni4 sin2
,
2
− ln Fcoh ∝ hni
(shot-noise scaling)
(30)
(31)
|φ| ≪ 1:
Fcoh ≈ exp −hniφ
2
,
− ln Fcoh ≈ hniφ2
(32)
22 / 32
Modified Purification
■
Model loss as beam splitter:
■
Order of BS and modulation doesn’t matter
i
h †
†
,
UAB ≡ exp iκ a b + ab
■
UA ≡ exp(ia† aφ).
Fidelity for the modified purification:
2
†
F = hψ|UAB UB UA UAB |ψi
■
(33)
(34)
Assume
UB ≡ exp(−ib† bθ),
θ free parameter.
(35)
23 / 32
Quantum Optics 102
■
Use Heisenberg picture:
h
†
UB UA UAB
UAB
■
J− ≡ a b,
■
†
†
†
i
= exp iµa a + iνb b − γ(a b − ab ) ,
1 †
†
J3 ≡
b b−a a ,
2
†
J+ ≡ ab ,
1 †
†
J≡
b b+a a ,
2
h
Λ3 = cos
■
ξ
2
−
i λξ3
sin
†
ξ
2
i−2
,ξ≡
q
(38)
λ23 + 4λ+ λ− .
eiΛ− J− |0iB = eiΛ− a b |0iB = |0iB .
Final result (η = cos2 κ = quantum efficiency):
2
X
2
n
a† a
Pa (n)z ,
F = hψ|z
|ψi = n
■
(37)
[J+ , J− ] = 2J3 , [J3 , J± ] = ±J± .
SU(2) disentangling theorem:
3 iΛ− J−
,
exp(iλ+ J+ + iλ− J− + iλ3 J3 ) = eiΛ+ J+ ΛJ
3 e
■
(36)
where µ ≡ φ cos2 κ − θ sin2 κ, ν ≡ φ sin2 κ − θ cos2 κ, γ ≡ (φ + θ) sin κ cos κ.
Define SU(2) operators:
†
■
†
moment-generating function, z transform
z ≡ ηeiφ + (1 − η)e−iθ .
(39)
24 / 32
Jensen’s Inequality
■
If z is real and positive, we can use Jensen’s inequality:
X
Pa (n)z n = hz n i ≥ z hni ,
F ≥ z 2hni ≡ Fz ,
n
■
− ln F ≤ C hni ,
(40)
shot-noise scaling bound.
When is z = ηeiφ + (1 − η)e−iθ (θ free parameter) real and positive?
η<
1
: any φ.
2
η≥
1
1−η
: | sin φ| ≤
, cos φ > 0.
2
η
(41)
25 / 32
Shot-Noise Scaling Bound
■
■
Supose |φ| ≪ 1 and |φ| ≪ (1 − η)/η, fidelity bound is Gaussian:
η
Fz ≈ exp −
hniφ2 .
1−η
Compare this with coherent state:
Fcoh ≈ exp −hniφ
■
■
■
■
2
.
(43)
Quantum enhancement of fidelity exponent limited by η:
− ln F .
■
(42)
η
η
(− ln Fcoh ) =
hniφ2 .
1−η
1−η
(44)
Generalize to lossy optical phase waveform detection, optomechanical force detection (no
optical cavity), etc.
Effect of optical cavity/complicated dynamics?
Similar idea applies to QCRB for lossy waveform estimation
Tsang, “Quantum Metrology for Open Dynamical Systems,” NJP 15, 073005 (2013).
26 / 32
Quantum Ziv-Zakai Bounds
■
■
Parameter estimation: prior P (x), likelihood P (y|x)
Ziv-Zakai bound on MSE:
1
E [x − x̃(y)]2 ≥
2
Z
∞
dτ τ
0
Z
∞
dx [P (x) + P (x + τ )] Pe (x, x + τ )
(45)
−∞
Pe (x, x + τ ) = average error probability for binary hypothesis testing:
P (y|H0 ) = P (y|x),
■
■
■
■
■
P (y|H1 ) = P (y|x + τ ),
1
2
h
p
P0 =
P (x)
,
P (x) + P (x + τ )
1 − 1 − 4P0 P1 F (x, x + τ )
Quantum: Pe (x, x + τ ) ≥
prove Heisenberg limit
⊗ν
√
√
Rivas-Luis:
, super-Heisenberg J
1 − ǫ|0i + ǫ|ψi
P1 = 1 − P0 . (46)
i
Tsang, PRL 108, 230401 (2012).
Multiparameter extensions possible.
27 / 32
Quantum Transition-Edge Detectors
■
Beyond initial state and measurements, dynamics can also enhance metrology
Unstable/chaotic dynamics is most promising.
■
Loschmidt echo (Peres):
■
H1 = H0 + ∆H,
■
■
■
■
U0,1 = T exp −i
Z
dtH0,1 ,
2
†
F = hψ|U0 U1 |ψi
F ≪ 1: Signature of quantum chaos, quantum phase transitions
Useful for detection near quantum
phase transitions
P z z
x
Ising model (H0,1 = −J j σj σj+1 + g0,1 σj ): can’t beat shot-noise scaling
OPO, Dicke: near threshold,
p
− ln F (g, g + ∆g) ∝ ∆g
(47)
(48)
28 / 32
■
Tsang, PRA 88, 021801(R) (2013).
Continuous Quantum Hypothesis Testing
■
Tsang, PRL 108, 170502 (2012).
■
Tsang, QMTR 1, 84-109 (2013)
◆
◆
◆
Begging the question: To demonstrate quantum behavior, you can’t assume just quantum
mechanics to process your data!
Right way: Hypothesis testing against classical model
The classical model should be as quantum as possible
■
■
Bell/CHSH etc.
Dynamical systems: Wigner, quasi-probability
29 / 32
Experimental Collaborations
■
Hidehiro Yonezawa (now at UNSW@ADFA), Akira Furusawa at U. Tokyo
◆
Iwasawa et al., PRL 111, 163602 (2013)
Position MSE
−16 2
(10
m )
1 (i)
(b)
Signal
RF source
Ti:S
to mixer
probe
AOM
OPO
AOM
EOM
SHG
2
LO
LO
Computer
Estimator
EOM
Oscilloscope
Estimate
Estimate
■
■
1.2
1
0.8
(i)
(p)
(ii)
(iii)
0.6 (iv)
0.4
(f )
(i)
(ii)
(iii)
0.005 (iv)
0.01
0
6
7
10
10
2
|α| (1/sec)
cavity-enhanced waveform QCRB
Warwick Bowen at U. Queensland
◆
◆
■
FPGA
(iv)
Trevor Wheatley, Elanor Huntington at UNSW@ADFA
◆
■
from RF
source
0.5 (iii)
0
Momentum MSE
−12
2 2 2
(10
kg m /s )
Mirror
Motion
Force MSE (N )
(a)
(q)
(ii)
Ang et al., “Optomechanical parameter estimation,” NJP 15, 103028 (2013)
Rheology: Fractional Brownian motion estimation
Michele Heurs at MPI Gravitational Physics, Hannover: QNC
Aaron Danner at NUS: Microwave Photonics
30 / 32
Quantum Smoothing
■
■
Tsang, PRL 102, 250403 (2009); PRA 80, 033840 (2009); 81, 013824 (2010).
Experiments:
◆
◆
◆
■
Wheatley et al., PRL 104, 093601 (2010).
Yonezawa et al., Science 337, 1514 (2012).
Iwasawa et al., PRL 111, 163602 (2013).
Rediscovery: Gammelmark, Julsgaard, Molmer, PRL 111, 160401 (2013).
31 / 32
References
■
Quantum Bounds
◆ Detection: Tsang and Nair, PRA 86, 042115 (2012).
◆ QCRB: Tsang, Wiseman, Caves, PRL, 106, 090401 (2011); Iwasawa et
al., PRL 111, 163602 (2013).
◆ QZZB: Tsang PRL 108, 230401 (2012).
◆ Open Systems: Tsang, NJP 15, 073005 (2013).
◆ Stellar Interferometry: Tsang, PRL 108, 230401 (2012).
■
Phase Homodyne,
No Backaction Noise
Quantum Dynamics Control
◆ Quantum Noise Cancellation: Tsang and Caves, PRL 105, 123601
(2010); PRX 2, 031016 (2012).
◆ Transition-Edge: Tsang, PRA 88, 021801(R) (2013).
■
Signal Processing
◆ Smoothing: Tsang, PRL 102, 250403 (2009); PRA 80, 033840 (2009);
◆
◆
◆
■
■
81, 013824 (2010).
Hypothesis Testing: Tsang, PRL 108, 170502 (2012); Tsang, QMTR
1, 84-109 (2013).
Mismatched Quantum Filtering: Tsang, arXiv:1310.0291.
Optomechanical Parameter Estimation: Ang et al., NJP 15, 103028
(2013).
http://mankei.tsang.googlepages.com/
[email protected]
32 / 32
Related documents