Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Bohr-Sommerfeld quantization rule in noncommutative space T. V. Fityo, I. O. Vakarchuk and V. M. Tkachuk Chair of Theoretical Physics, Ivan Franko National University of Lviv, 12 Drahomanov St., Lviv, Ukraine Several independent lines of theoretical physics investigations (string theory#1, black holes#2) imply h̄ 1 ∆X ≥ + β∆P . (1) 2 ∆P √ It means that ∆X ≥ ∆Xmin = h̄ β. Kempf#3 proposed to modify canonical commutation relation [x, p] = ih̄ [X, P ] = ih̄(1 + βP 2). (2) Heisenberg inequality for this commutation relation is equivalent to (1). #1 Gross D. J., Mende P. F. String theory beyond the Planck scale // Nucl. Phys. B.— 1988.— V. 303, P. 407–454 #2 Maggiore M. A generalized uncertainty principle in quantum gravity // Phys. Lett. B.— 1993.— V. 304, P. 65–69 #3 Kempf A. et al. Hilbert space representation of the minimal length uncertainty relation // Phys. Rev. D.— 1995.— V. 52, P. 1108–1118 Known approximate methods 1. Perturbation theory#4. 2. ? Bohr-Sommerfeld quantization rule To find spectrum of the problem " P2 # + U (X) ψ = Eψ, 2m Quasi-coordinate representation [X, P ] = ih̄f (P ). d X = x, P = P (p), p = −ih̄ ; dx (3) dP (p) = f (P ). dp Eigenfunction and action of P 2 on it i ψ(x) = exp S(x) , h̄ #4 Brau ih̄ P 2ψ = P 2(S 0) − [P 2(S 0)]00S 00 + . . . ψ. 2 F. Minimal length uncertainty relation and the hydrogen atom // J. Phys. A.— 1999.— V. 32, P. 7691–7696 In linear approximation over h̄ 1 i q ψ(x) = C1 exp h̄ |P f (P )| P (p) = q Z x i pdx + C2 exp − h̄ Z x pdx , 2m(E − U (x)). Matching Zx2 pdx = πh̄(n + δ), n = 0, 1, 2, . . . x1 or in initial variables − I XdP = 2πh̄(n + δ). f (P ) WKB approximation is valid if d P 2 h̄ dx P f (P ) . For f (P ) = 1 + βP 2 2 ∆Xmin aλ . a a — characteristic size of the system, λ = 2πh̄/P . (4) 1D Examples Hamiltonian P 2 + X2 P 2, −a < X < a α P2 − X P 2 − Xγ2 [X, P ] = ih̄(1 + βP 2). Eigenvalues En 1 2 (2n + 1) + β n + n + 2 + O(β 2) #5 2 4 2 πn πn + β + O(β 2) #6 2a 3 2a r 2 √ 1 1 − 1 + 2α #7 − 4β β n+δ — En − EnWKB 1 β + O(β 2 ) 4 O(β 2) 0 √ 4 −π(n+δ)/ γ −β e #5 Kempf A. et al. Hilbert space representation of the minimal length uncertainty relation // Phys. Rev. D.— 1995.— V. 52, P. 1108–1118 #6 Detournay S. et al. About maximally localized states in quantum mechanics // Phys. Rev. D.— 2002.— V. 66.— 125004 #7 Fityo T. V. et al. One dimensional Coulomb-like problem in deformed space with minimal length // J. Phys. A.— 2006.— V. 39.— P. 2143–2149. 3D Examples [Xi, Pj ] = ih̄((1 + βP 2)δij + β 0PiPj ). L2 → (l + 1/2)2. γ . X H = P2 − Its spectrum in linear approximation over β, β 0 is #8 En,l ≈ − | γ2 γ4 " # " # β − β 0/2 ! 1 1 2 1 0 − − + β + β + . 2 3 4n 8n l + 1/2 n l + 1/2 n l(l + 1)(l + 1/2) {z WKB approximation } H = P 2 + X2 β 0 #9 0 2 0 2 En,l ≈ 2n + 3 + (β + β )(n + 3/2) + (β − β )(l + 1/2) +2β − . {z } | 2 WKB approximation #8 Benczik S. et al. The hydrogen atom with minimal length // Phys. Rev. A.— 2005.— V. 72.— 012104 #9 Chang L. N. et al. Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations // Phys. Rev. D.— 2002.— V. 65.— 125027 Let us consider more general case of deformed space [X, P ] = ih̄f (X, P ). It is unknown if we can express initial operators X = X(x̂, p̂), P = P (x̂, p̂), where [x̂, p̂] = ih̄. Classical variables x and p always exist that {X, P }x,p = ∂X ∂P ∂P ∂X − = f (X, P ). ∂x ∂p ∂x ∂p I pdx = Z dpdx = H≤En = Z H(P,X)≤En dXdP = 2πh̄(n + δ). f (X, P ) (5) Example Let us consider harmonic oscillator eigenvalue problem (P 2 + X 2)ψ = Eψ in deformed space [X, P ] = i(1 + αX 2 + βP 2). WKB approximation (5) gives √ 2 √ 2 √ √ √ ( α + β) 2(n+δ) αβ ( α − β) −2(n+δ)√αβ α + β En = e + e − . 4αβ 4αβ 2αβ Leading term is underlined. It coincides with leading term of exact solution #10. #10 Quesne C., Tkachuk V. M. Harmonic oscillator with nonzero minimal uncertainties in both position and momentum in a SUSYQM framework // J. Phys. A.— 2003.— V. 36.— 10373–10389.