Download programma di ricerca

Document related concepts
no text concepts found
Transcript
ISTITUTO NAZIONALE DI FISICA
NUCLEARE
Preventivo per l'anno 2005
Codice
Esperimento
Gruppo
PI62
4
Rapp. Naz.: Kenichi Konishi
Rappresentante nazionale:
Kenichi Konishi
Struttura di appartenenza:
PI
Posizione nell'I.N.F.N.:
PROGRAMMA DI RICERCA
A) INFORMAZIONI GENERALI
NONPERTURBATIVE DYNAMICS OF GAUGE THEORIES AND
Linea di ricerca
RELATED PROBLEMS IN QFT, STRING THEORIES AND STATISTICAL
MECHANICS
Laboratorio ove
si raccolgono i dati
Sigla dello
esperimento assegnata dal
laboratorio
Acceleratore usato
Fascio
(sigla e caratteristiche)
Processo fisico
studiato
Apparato strumentale
utilizzato
Sezioni partecipanti
all'esperimento
Istituzioni esterne all'Ente
partecipante
Durata esperimento
B) SCALA DEI TEMPI : piano di svolgimento
PERIODO
Mod EN. 1
ATTIVITA' PREVISTA
(a cura del responsabile nazionale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
BA
Codice
Esperimento
PI62
Resp. loc.: Leonardo Angelini
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
Missioni interne
di cui SJ
4,0
4,0
Missioni estere
5,0
5,0
Consorzio
Ore CPU
Spazio Disco
Cassette
Altro
Totale
9,0
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
FI
Codice
Esperimento
PI62
Resp. loc.: Marcello Ciafaloni
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
Missioni per collaborazione con altre sedi dell' iniziativa
di cui SJ
2,0
2,0
Missioni per conferenze e collaborazioni all' estero
6,5
6,5
Consorzio
Ore CPU
Spazio Disco
Cassette
Altro
Totale
8,5
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
MI
Codice
Esperimento
PI62
Resp. loc.: Luca Molinari
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
Spese di viaggio per collaborazione e partecipazione a workshop e convegni
di cui SJ
1,0
1,0
Spese di viaggio per partecipazione a workshop e convegni
3,0
3,0
Consorzio
Ore CPU
Spazio Disco
Cassette
Altro
Totale
4,0
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PD
Codice
Esperimento
PI62
Resp. loc.: Antonio Bassetto
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
Missioni interno
di cui SJ
3,0
3,0
Ospiti stranieri
6,0
6,0
Missioni estere
7,0
7,0
Consorzio
Ore CPU
Spazio Disco
Cassette
Altro
Totale
16,0
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PI
Codice
Esperimento
PI62
Resp. loc.: Kenichi Konishi
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
Missioni interne, Incontri e seminari
di cui SJ
4,0
4,0
Invito (Invitation) Prof. Andrei Smilga, University of Nantes, France, per 2 settimane (2 1,5
weeks)
1,5
Invito (Invitation) Prof. Nick Dorey, University of Cambridge, UK per 2 settimane (2
weeks)
Visit Osaka University (Konishi)
4,0
Participation Conference in Munich (May 2005) (Konishi)
2,0
Other Visits/participation to conferences
6,0
Consorzio
Ore CPU
Spazio Disco
Cassette
3,0
12,0
Altro
Totale
19,0
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
RM2
Codice
Esperimento
PI62
Resp. loc.: Francesco Fucito
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
missioni interno
di cui SJ
1,5
1,5
invito r.poghossian
1,5
1,5
missioni estero
1,5
1,5
Consorzio
Ore CPU
Spazio Disco
Cassette
Altro
Totale
4,5
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
TS
Codice
Esperimento
PI62
Resp. loc.: Ugo Bruzzo
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
Missioni interne
di cui SJ
1,0
1,0
Prof. Vladimir Roubtsov, Universite' d'Angers, Francia (1 settimana)
1,0
Prof. Andrei Marshakov (ITEP, Mosca)
1,0
2,0
Missioni estero (fra altro, partecipazione a un convegno internazionale su geometria e
teoria delle stringhe presso la University of Philadelphia)
2,5
2,5
Consorzio
Ore CPU
Spazio Disco
Cassette
Altro
Totale
5,5
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PR
Codice
Esperimento
PI62
Resp. loc.: Luca Griguolo
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
collaborazioni con gli altri ricercatori dell'Iniziativa specifica, partecipazione a convegni
nazionali
di cui SJ
2,0
2,0
Invito di un mese per il Prof. Miguel Angel Vazquez−Mozo, Salamanca Un. (all'interno
della convenzione CYCIT)
1,5
1,5
collaborazioni internazionali e partecipazione a convegni internazionali
4,0
4,0
Consorzio
Ore CPU
Spazio Disco
Cassette
Altro
Totale
7,5
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
TN
Codice
Esperimento
PI62
Resp. loc.: Giuseppe Nardelli
Gruppo
4
PREVENTIVO LOCALE DI SPESA PER L'ANNO 2005
In KEuro
IMPORTI
VOCI
DI
SPESA
DESCRIZIONE DELLA SPESA
Parziali
Totale Compet.
SJ
Missioni Interno
di cui SJ
1,0
1,0
Missioni Estero
3,0
3,0
Consorzio
Ore CPU
Spazio Disco
Cassette
Altro
Totale
4,0
di cui SJ
0,0
Sono previsti interventi e/o impiantistica che ricadono sotto la disciplina della legge Merloni ?
Breve descrizione dell'intervento:
Mod EC./EN. 2
(a cura del responsabile locale)
A cura della
Comm.ne
Scientifica
Nazionale
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
BA
Codice
Esperimento
PI62
Resp. loc.: Leonardo Angelini
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
BA
Codice
Esperimento
PI62
Resp. loc.: Leonardo Angelini
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
FI
Codice
Esperimento
PI62
Resp. loc.: Marcello Ciafaloni
ALLEGATO MODELLO EC2
PLANNED ACTIVITIES
The Florence group intends to investigate some non−perturbative
features of lower dimensional gravities and of quantum field
theories, including their deformations that live on non−commutative
spaces. Particular attention will be devoted to the applications
of this research to condensed matter system and to its relations
with string theory.
Over the years, 2+1 gravity has been the object of a vast interest
both at the classical and at the quantum level, because it is the
simplest theoretical "laboratory" where to investigate gravity
beyond the perturbative regime. Recently the Florence group has
pointed out an intriguing connection between this model and the
high energy equations in Yang−Mills: By a proper ordering of the
relevant operators, the canonical quantization of the two body
system in gravity can be in fact related to the so−called BFKL
equation that describes the high energy regime in Yang−Mills. The
natural question that we intend to investigate is wether this
analogy is kept in the many body case. In particular we shall
investigate the three body case that is partly solvable in
either model. At level of conformal field theories, we shall also
continue to explore the "old" connection between the gravity in
2+1 dimensions and the Liouville theory.
A powerful tool to explore the non−perturbative regime in quantum
field theories has always been the large N−expansion. Following
the recent works of Armoni, Shifman and Veneziano, we shall probe
the large N equivalence between gauge theories with varying
degrees of supersymmetries. Our effort will concentrate on the
planar equivalence between N=1 supersymmetric Yang−Mills theory
and a non supersymmetric "orientifold" field theory, which bears
some resemblance with ordinary QCD. This equivalence will be
tested through functional and renormalization group techniques.
In this context, we shall try to compute the 1/N corrections
to the planar limit and to explore the role of topologically
non−trivial configurations. The extensions of this kind
equivalence to lower dimensional model will be scrutinized as
well.
Quantum field theories on non−commutative space will be another of
the main topics of research of the Florence group. In three
dimensions, we shall consider the supersymmetric version of
topologically massive gauge theories and we shall investigate
their phase diagram after a soft breaking of the supersymmetry.
This will allow us to consistently discuss the stability of the
perturbative vacuum, which could be in principle jeopardized by
the UV−IR mixing characterizing non−commutative field theories.
Another interesting application of three−dimensional
non−commutative gauge theory that we are going to examine is
a recent proposal due to Susskind. He suggested that the
hydrodynamic properties of
Gruppo
4
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
FI
Codice
Esperimento
PI62
Resp. loc.: Marcello Ciafaloni
ALLEGATO MODELLO EC2
the quantum Hall fluid are captured by
Chern−Simons theory, at level $k$, defined on a non−commutative
background. The electrons sit at Laughlin filling fraction
$\nu=1/k+1$ and the fluids fill the infinite plane. Susskind's
proposal represents a novel way of incorporating the constraints
of quantum statistics in the effective hydrodynamical models. In a
sense, it is a refined implementation of the `flux−attachment'
transformation that leads to ordinary Chern−Simons theories as
effective models of Hall fluids. In fact, this description
attempts to include the effects of the Coulomb interaction between
electrons through an additional non−commutativity. This approach
may solve some important open questions in the field, such as the
unification of the various effective theories that describes
different Hall plateaux, the problem of modelling the transition between
two plateaux and the description of the structure of the quasi−particles,
based, up to now, only on Jain phenomenological theory.
Finally we shall also examine the connection between topological
string theories and non−commutative gauge theories in
two−dimensions, exploiting the explicit Gross−Taylor string
expansion for Yang−Mills theory on Riemann surfaces: in
particular we shall attempt to perform a large N double−scaling
limit in order to resum non−perturbative contributions in the
string coupling (D1 branes). On the field theory side, we shall try
to clarify how the same contributions emerge from the instanton
expansion of the gauge theory. Lately Vafa suggested that these
non−perturbative contributions may also play a role in understanding
some aspects of the relation between black−hole physics and
topological strings. The insertion in the above analysis of 't Hooft
fluxes will allow for a comparison with the related non−commutative
theories in two dimensions.
Gruppo
4
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
MI
Codice
Esperimento
PI62
Resp. loc.: Luca Molinari
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
MI
Codice
Esperimento
PI62
Resp. loc.: Luca Molinari
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PD
Codice
Esperimento
PI62
Resp. loc.: Antonio Bassetto
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PD
Codice
Esperimento
PI62
Resp. loc.: Antonio Bassetto
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PI
Codice
Esperimento
PI62
Resp. loc.: Kenichi Konishi
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PI
Codice
Esperimento
PI62
Resp. loc.: Kenichi Konishi
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
RM2
Codice
Esperimento
PI62
Resp. loc.: Francesco Fucito
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
RM2
Codice
Esperimento
PI62
Resp. loc.: Francesco Fucito
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
TS
Codice
Esperimento
PI62
Resp. loc.: Ugo Bruzzo
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
TS
Codice
Esperimento
PI62
Resp. loc.: Ugo Bruzzo
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PR
Codice
Esperimento
PI62
Resp. loc.: Luca Griguolo
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PR
Codice
Esperimento
PI62
Resp. loc.: Luca Griguolo
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
TN
Codice
Esperimento
PI62
Resp. loc.: Giuseppe Nardelli
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 1
(a cura del responsabile locale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
TN
Codice
Esperimento
PI62
Resp. loc.: Giuseppe Nardelli
Gruppo
4
ALLEGATO MODELLO EC2
Mod EC./EN. 2a Pagina 2
(a cura del responsabile locale)
Codice
Esperimento
Gruppo
PI62
4
Rapp. Naz.: Kenichi Konishi
ISTITUTO NAZIONALE DI FISICA
NUCLEARE
Preventivo per l'anno 2005
PREVENTIVO GLOBALE DI SPESA PER L'ANNO 2005
In KEuro
A CARICO DELL' I.N.F.N.
Struttura
Missioni
interne
Inviti
SJ
BA
FI
MI
PD
PI
PR
RM2
TN
TS
4,0
2,0
1,0
3,0
4,0
2,0
1,5
1,0
1,0
TOTALI 19,5
Materiale
di
consumo
Missioni
estere
SJ
SJ
SJ
Trasporti
e
facchinaggi
Spese
di
calcolo
SJ
Affitti
e
Materiale TOTALE
manutenzione inventariabile Compet.
SJ
SJ
SJ
SJ
2,0
5,0
6,5
3,0
7,0
12,0
4,0
1,5
3,0
2,5
9,0
8,5
4,0
16,0
19,0
7,5
4,5
4,0
5,5
14,0
44,5
78,0
6,0
3,0
1,5
1,5
NB. La colonna A carico di altri enti deve essere compilata obbligatoriamente
Mod EC./EN. 4
A
carico
di altri
Enti
(a cura del responsabile nazionale)
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Nuovo esperimento Gruppo
PI62
4
PROPOSTA DI NUOVO ESPERIMENTO
Title:
NONPERTURBATIVE DYNAMICS OF GAUGE THEORIES AND RELATED PROBLEMS IN QFT,
STRING THEORIES AND STATISTICAL MECHANICS
Research Project, Generalities:
The PI62 Project Group aims to make in−depth investigations on many non−perturbative aspects of
gauge field theories, string theory and statistical mechanics. Some of the concrete issues which will
be studied are:
Instantons in Gauge Theories and in String Theory, Confinement and Dynamical Symmetry
Breaking in 4D Gauge Theories, Possible other phases in QFT, QCD, Domain Walls, Monopoles
and Vortices, Supersymmetric Gauge Theories, Large N techniques, MQCD, Topological Field
Theories, Exact Results in 4D Gauge Theories, String Theories, Tachyon Condensation in String
Theory, etc.
This area of study gained recently a renewed interest and impetus for new developments. We
intend to pursue further the research aimed at clarifying these and related problems. One of the
characteristics of this area of research is that it is quite interdisciplinary, as exemplified by the
common nonperturbative techniques used in the field theory/statistical mechanics/string theory, use
of results from apparently unrelated research fields such as the solid state physics and algebraic
geometry, solitons seen in field theory, statistical mechanics and string theory, etc., and to face these
problems we need constant updating of our knowledge and techniques. It is therefore fundamental
that we promote a synergy of researchers expert in different fields, exchange of information, promote
interactions among experts, young researchers and graduate students.
Within our project we therefore intend to organize exchange of visits, seminars, and small
workshops in which a few foreign researchers, in particular those active in Europe, will also be
involved. We wish to create occasions of discussions and for effective collaborations among the
members of the collaboration.
The research projects:
(i) Study of nonabelian monopoles, vortices and their roles in confinement
and/or dynamical symmetry breaking; Study of phases and dynamics of wide classes of N=4, 2, 1
supersymmetric gauge theories; Lessons for QCD
(PI, PD, PR, RM2 groups);
(ii) Study of multi−instanton effects in string theories and in 4D supersymmetric gauge theories
(RM2, PD, PI groups);
(iii) Analysis of gauge theories in noncommutative / non−anticommutative
spacetimes
(PR, FI, PD groups);
(iv) Use of large N_c techniques; exploration of the idea of planar equivalence between N=0 and
N=1 super Yang−Mills theories
(FI, PR groups);
Besides these main themes of research, our activities will be further complemented and enriched by
the work covering the following research fields:
(v) Study of tachyon condensation in string theory (TN group),
Unitarity in string theory (PD group);
(vi) Non−equilibrium statistical mechanics; Variational approach to QFT
(BA group);
(vii) Topological field theories (PD group);
(viii) Low−dimensional gravity, CFT, Relation to BFKL equations (FI group)
−−−−−
For more details about the scientific activities, results obtained and future projects of each
subgroups, see the following PDF file, Activity.pdf.
Mod EN. 5 Pagina 1 di 2
(a cura del rappresentante nazionale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Nuovo esperimento Gruppo
PI62
4
PROPOSTA DI NUOVO ESPERIMENTO
Mod EN. 5 Pagina 2 di 2
(a cura del rappresentante nazionale)
1
Research Activities of PI62
In the following, the research fields, recent results and future plan of each local
groups forming PI62 will be illustrated.
2
2.1
Padova
Research Activity of Bassetto, De Pol and Torrielli
Bassetto, De Pol and Torrielli (B-D-T below) have analyzed the unitarity of string
and superstring amplitudes at one loopin constant antisymmetric background. We
have obtained a new series of double poles in the open channel, which signals a
partial symmetry breaking, consistently with tree level factorization properties. We
have also studied the noncommutative field theory limit of these amplitudes, which
presents unitarity breaking in the electric case. On the pure noncommutative field
theory side, B-D-T have performed a perturbative analysis of the correlator of three
parallel Wilson lines in two-dimensional noncommutative U(N) Yang-Mills theory.
We have obtained for such correlator, in the large N limit, an exponential growth
with the length of the lines, substantiating former expectations. Bassetto, De Pol
and Torrielli have also obtained the noncommutative version of the Makeenko-Migdal
loop equation for two-dimensional Yang-Mills theory, by generalizing the KazakovKostov procedure.
2.2
Research Activity of Matone
The main research topic concerned the nonperturbative structure of SYM theories.
In particular, it has been shown that the instanton moduli space maps to the moduli
space of punctured spheres. The formulation shows a strict relationship with Liouville
theory (Liouville F-Models).
Another related topic concerned the Dijkgraaf-Vafa formulation (DV) of N=1 and
N=2 SYM theoriee. It has been shown that the N=2 theory induces a duality in N=1.
It has been also shown that the original formulation requires a modification which
also makes it possible to directly express the N=2 prepotential directly as a matrix
path-integral. Furthermore, the exact operatorial form of the chiral ring considered
1
by Cachazo, Douglas, Seiberg e Witten in deriving the DV results from the Konishi
anomaly. It has been shown that some discrepancies of the DV formulation are due to
the existence of an affine connection previously considered as an integrable one-form.
Another topic concerned the Berkovits covariant formulation of the superstring
based on the pure spinors. It has been shown that such a formulation corresponds to
a twisted and complexified version of the superembedding formulation of the superstring.
An infinite explicit set of eigenfunctions and eigenvalues for the Laplacian on
Riemann surfaces of genus g > 1 has been obtained.
2.3
Research Activity of Pieralberto Marchetti
1) Charged sectors of lattice gauge theories in the Coulomb phase.
We propose a construction of electrically (and by duality magnetically) charged
fields when dynamical electric and magnetic charges coexist. In this situation the
standard Dirac ansatz (a multiplication of the charged field by a Coulomb phase a
factor) is inconsistent due to a violation of the Dirac quantization condition for the
electro-magnetic flux. Our proposal replace the Coulomb phase factor with an integral
over fluctuating Mandelstam strings weighted by a measure with support on rough
strings whose average at large scales approximate the Coulomb phase factor, thus
avoiding the infrared divergence appearing if one uses a single Mandelstam string and
simultaneously obeying Dirac quantization condition for fluxes. We propose to take
the expectation values of such charged fields as order parameter for the confinement
deconfinement transition in abelian (lattice)gauge theories with dynamical charges
and monopoles. Numerical evidence for the validity of such proposal appear in papers
of Polikarpov et al (hep- lat/ 0110150). A slight modification of the above construction
allows a precise definition of ’t Hooft monopole in pure SU(2) Yang Mills theories.
This construction involves surfaces of Z2 vortices and therefore creates a link between
two approaches to confinement, abelian dominance where confinement is attributed
to condensation of ’t Hooft monopoles and center dominance where it is attributed
to condensation of vortices.
2) Chern-Simons U(1)-charge × SU(2)-spin gauge approach to high Tc superconductors.
On the t-J model used to describe the high Tc superconductors we perform a
2
gauging of the U(1)-charge × SU(2)-spin symmetry with Chern-Simons action for
the gauge fields; thus obtaining a model strictly equivalent to the original one. To
the electron of the gauged model, we apply, following Anderson’s (Varenna 1987)
suggestion, a spin-charge decomposition rewriting it as a product of a charged spinless
fermion (holon) and a spin 1/2 neutral boson (spinon), the first interacting with
the U(1)-change gauge field, the second with the SU(2)-spin gauge field. We then
analyses the above model in mean field in a phase (pseudogap) where we are able
to derive a low energy effective action. Our formalism reproduces automatically as a
consequence of the introduction of the SU(2)-gauge field a gap in the spin excitations
with a doping dependence in agreement with NMR experimental data. Starting from
the effective action in we calculate the in plane resistivity, exhibiting a metal-insulator
crossover with decreasing temperature, as a conseguence of the competition between
the spin gap and a dissipation induced by spin-currents. The result are in qualitative
agreement with experimental data, also for the magneto resistance. We calculate the
out of plane resistivity and give a review of the entire formalism with emphasis on
the relation with experimental results.
3) Dirac strings and Chern Kernel for p-branes
We give a generalization of the PST (Pasti-Sorokin-Tonin) formalism with manifest duality in the (semi-)classical treatment of p-branes interacting with gauge forms,
involving a p+1-generalization of Dirac strings. This formalism allows in particular to
treat the inflow mechanism for cancellation of anomalies in supergravity theories and
is related to the advanced mathematical formalism of characteristic currents (HarveyLawson, Asterisque 1993) which established a link between differential geometry and
distribution theory.
We apply a variant of the formalism, involving a diffeomorphism invariant generalization of the Coulomb field introduced by Chern, to the cancellation of anomalies
for the M5-brane, the soliton of M-theory in d=11, also in the presence of the M-2
brane.
3
RomaII
Our science project (Fucito, D’Alessandro) is focused on the computations of
multi instanton corrections to various supersymmetric gauge theories. This field has
reached a high degree of maturity just in recent times. The application of localization
3
techniques to the computation of the functional integral allows for a solution for
arbitrary winding numbers. For this application to be possible the theory has first
to be formulated in the BRST formalism. The relevant physical computation to
perform is that of the cohomology of the BRST operator. To do this the theory is
suitably deformed to give a compact moduli space. The physical results are to be
independent of this deformation parameter. Moreover it is convenient to deal with
a finite number of fixed points of the action of Q. To localize, the theory is to be
deformed by introducing two auxiliary rotations in the space time: the final result is
a series whose expansion parameters are those of the previously introduced rotations.
The Seiberg-Witten’s results are then obtained in the limit in which these parameters
are sent to zero. Even more surprisingly the other terms in this expansion match the
contributions given by non perturbative contributions coming from string whose world
sheet has genus greater that zero. The results we have gathered up to this moment
are:
1) computations for the N=2 supersymmetric theory and its gravitational corrections;
2) same thing for the N=2 supersymmetric theory with massive hypermultiplets
transforming in the adjoint;
3) we have repeated these computations for gauge groups Sp and SO;
4) same thing for the N=4 case;
5) all of the above on ALE manifolds of the A type together with the Betti’s
numbers for the moduli over these manifolds;
6) computations for the so called quiver theories;
7) a proof that the Matone’s relation holds also for the case in which gravitational
corrections are taken into account.
We are actually looking at the N=1 case and we are trying to find an explanation
to this suprising coincidence between the results obtained in four and two dimensions.
4
Parma
The scientific project of the Parma group (Bonini, Calcagni, Cicuta, Griguolo,
Pasquetti) originates from a long experience in non-perturbative QFT, ranging from
4
large-N expansions and matrix models to renormalization group techniques applied
to gauge theories, including more recently the study of instanton effects and ChernSimon physics, QFT theories on noncommutative spaces and braneworld cosmology.
The following list of pubblications is relevant for the present proposal.
The activity of the Parma group will be mainly focused on non-perturbative aspects of quantum field theories, taking into account the presence of supersymmetries
and of deformed space-time structures (non-commutativity and non-anticommutativity).
Applications to theories of extended objects (strings and branes) and to condensed
matter physics will also be considered. In order to tackle the different problems, a
variety of techniques will be useful: the force of the researchers expert in various different methods will be exploited in a joint effort. In particular, the fields in which we
have a particular expertise are large-N expansions, matrix models computations, exact renormalization group techniques and instanton/functional determinants calculus
could be profitably applied.
The planar (large-N) equivalence between gauge theories with varying degree of
supersymmetry will be investigated, following the recent works of Armoni, Shifman
and Veneziano. The main emphasis will be put on the relation, in the planar limit,
between N = 1 super-Yang-Mills theory and a non-supersymmetric ”orientifold field
theory”, resembling in many respects ordinary QCD: the non-perturbative equivalence will be explored by means of functional determinant techniques and of the
exact renormalization group approach and the role of topologically non-trivial configurations will be studied in this context. Extensions to the 1/N corrections and to
the three-dimensional case will be also considered.
Concerning more general supersymmetric gauge theories, it has been shown recently that some superpotential, coming from string and brane models, can be rewritten in terms of matrix integrals. It is planned to apply the random matrix theory to
the computation of these superpotentials. Random matrix techniques will be used as
well to compute Yang-Mills integrals in reduced superstring theories.
The study of gauge theories on deformed spaces will be another research line:
in particular the recently discovered N = 1/2 supersymmetry is related to the socalled non-anticommutative superspace, produced as low-energy limit of string theory
in RR-background, and it generates interesting quantum theoretical effects, both
on the perturbative and the non-perturbative side. The possibility to extend this
deformation in different space-time dimensions and the analysis of topologically non5
trivial structures as instantons and Chern-Simons terms could be explored.
Concerning instead the more familiar noncommutative gauge theories, the supersymmetric three-dimensional case will be considered and the consistency of the
theory, after a soft breaking of the supersymmetry, will be discussed, in connection
with the known instability of the perturbative nonsupersymmetric vacuum, as learnt
from the four-dimensional case. Noncommutative Chern-Simons theories have also
been suggested as effective descriptions of quantum Hall fluids. Natural observables of
noncommutative gauge theories, the so-called ‘open Wilson lines’, where conjectured
to be a mathematical description of ‘quasiexcitons’, the dominant physical excitations
of the Hall fluid at large quasimomentum. The study of these conjectures and the
use of matrix models in describing the noncommutative Chern-Simons theory will
investigated.
The connection between string theories and large-N gauge theories will be instead
explored in two-dimensions, taking advantage of the explicit Gross-Taylor string expansion for Yang-Mills theory on Riemann surfaces: in particular a double-scaling
limit, at large-N, will be applied in order to take into account non-perturbative contributions in the string coupling (D1 branes), and a resummation of the instanton
series will be attempted. Recently it as been suggested by Vafa that non-perturbative
contributions could be relevant to explain some aspects of the relation between blackhole physics and topological strings. The insertion of ’t Hooft fluxes will also allow for
a comparison with the related noncommutative theories in two dimensions. A further
connection of Parma researches with string theory is the following: it is intended to
study tachyon condensation in boundary string field theory by means of the exact
renormalization group equation.The boundary entropy corresponding to the tension
of a D24-brane, which originates from a D25-brane with one compactified dimension,
will be calculated.
Some applications of the physics of strongly coupled gauge theories to braneworld
models will be also attempted.
5
Pisa
Reseach in the Pisa group of PI62 (Konishi, Auzzi, Bolognesi, Evslin, Marmorini,
Brosco, Halat, Ferretti, Yokoi) in the last three years has mainly concentrated on the
systematic study of the mechanism of confinement and dynamical symmetry breaking
6
in N=2/N=1 supersymmetric gauge theories. The main results obtained are the
following:
(1) We found that nonabelian monopoles of Goddard-Olive-Nuyts type do appear
as the infrared degrees of freedom in certain vacua of softly broken N=2 SQCD
(supersymmetric version of QCD), and play the fundamental role as order parameter
of confinement / dynamical symmetry breaking. It is the first known class of theories
in which these solitons, previously known only as massive semi-classical states, make
appearance as fully quantum mechanical, massless infrared degrees of freedom and
play the central role (Bolognesi and Konishi);
(2) We found (Auzzi, Grena, Konishi) that in a class of ”almost superconformal”
vacua, confinement and dynamical symmetry breaking are caused by cooperation of
strongly interacting monopoles and dyons. This is the first example of nonabelian
generalization of Argyres-Douglas mechanism of nonlocal cancellation of the beta
function.
(3) In collaboration with Alexei Yung of S. Petersburg, we discovered and constructed (for the first time) nonabelian BPS vortices in supersymmetric theories with
SU(N) gauge group, which are quantum mechanically stable. This work has important implications on the very existence of quantum mechanical nonabelian monopoles
as well. (Auzzi, Bolognesi, Yung, Evslin, Konishi)
This work, together with independent, related papers by Hanany, Tong, Shifman
and Yung, are leading to interesting developments in the understanding of vortex
dynamics and their relation to the dynamics of 4D theory itself;
(4) In collaboration with Hitoshi Murayama of LBL/Princeton, we made a systematic investigation of topological and dynamical (quantum mechanical) aspects of
nonabelian monopoles which have been previously left explored only partially. (Auzzi,
Bolognesi, Murayama, Evslin, Konishi)
We intend to continue our effort to further clarify many related issues. (Auzzi,
Bolognesi, Konishi, Marmorini, Evslin, Ferretti).
6
Milano
The tools of Random Matrix theory are applied to the study of Yang-Mills integrals, arising in reduced models of string theory. We devised a systematic method
7
to reduce the integration space. An exact duality between the spectrum of a banded
Hamiltonian matrix and the corresponding transfer matrix is obtained, and it is
promising for the study of the dynamics of a particle in a lattice, enumeration of lattice walks in d > 1, spectral properties of non-Hermitian matrices. (Luca Molinari)
7
Firenze
The Florence group (Ciafaloni, Valtancoli, Cappelli, Seminara, Caporaso) intends
to investigate some non-perturbative features of lower dimensional gravities and of
quantum field theories, including their deformations that live on non-commutative
spaces. Particular attention will be devoted to the applications of this research to
condensed matter system and to its relations with string theory.
Over the years, 2+1 gravity has been the object of a vast interest both at the
classical and at the quantum level, because it is the simplest theoretical ”laboratory”
where to investigate gravity beyond the perturbative regime. Recently the Florence
group has pointed out an intriguing connection between this model and the high
energy equations in Yang-Mills: By a proper ordering of the relevant operators, the
canonical quantization of the two body system in gravity can be in fact related to the
so-called BFKL equation that describes the high energy regime in Yang-Mills. The
natural question that we intend to investigate is wether this analogy is kept in the
many body case. In particular we shall investigate the three body case that is partly
solvable in either model. At level of conformal field theories, we shall also continue to
explore the ”old” connection between the gravity in 2+1 dimensions and the Liouville
theory.
A powerful tool to explore the non-perturbative regime in quantum field theories
has always been the large N-expansion. Following the recent works of Armoni, Shifman and Veneziano, we shall probe the large N equivalence between gauge theories
with varying degrees of supersymmetries. Our effort will concentrate on the planar
equivalence between N=1 supersymmetric Yang-Mills theory and a non supersymmetric ”orientifold” field theory, which bears some resemblance with ordinary QCD. This
equivalence will be tested through functional and renormalization group techniques.
In this context, we shall try to compute the 1/N corrections to the planar limit and
to explore the role of topologically non-trivial configurations. The extensions of this
kind equivalence to lower dimensional model will be scrutinized as well.
8
Quantum field theories on non-commutative space will be another of the main
topics of research of the Florence group. In three dimensions, we shall consider the
supersymmetric version of topologically massive gauge theories and we shall investigate their phase diagram after a soft breaking of the supersymmetry. This will allow
us to consistently discuss the stability of the perturbative vacuum, which could be in
principle jeopardized by the UV-IR mixing characterizing non-commutative field theories. Another interesting application of three-dimensional non-commutative gauge
theory that we are going to examine is a recent proposal due to Susskind. He suggested that the hydrodynamic properties of the quantum Hall fluid are captured by
Chern-Simons theory, at level k, defined on a non-commutative background. The
electrons sit at Laughlin filling fraction ν = 1/k + 1 and the fluids fill the infinite
plane. Susskind’s proposal represents a novel way of incorporating the constraints of
quantum statistics in the effective hydrodynamical models. In a sense, it is a refined
implementation of the ‘flux-attachment’ transformation that leads to ordinary ChernSimons theories as effective models of Hall fluids. In fact, this description attempts
to include the effects of the Coulomb interaction between electrons through an additional non-commutativity. This approach may solve some important open questions
in the field, such as the unification of the various effective theories that describes different Hall plateaux, the problem of modelling the transition between two plateaux
and the description of the structure of the quasi-particles, based, up to now, only on
Jain phenomenological theory.
Finally we shall also examine the connection between topological string theories
and non-commutative gauge theories in two-dimensions, exploiting the explicit GrossTaylor string expansion for Yang-Mills theory on Riemann surfaces: in particular
we shall attempt to perform a large N double-scaling limit in order to resum nonperturbative contributions in the string coupling (D1 branes). On the field theory side,
we shall try to clarify how the same contributions emerge from the instanton expansion
of the gauge theory. Lately Vafa suggested that these non-perturbative contributions
may also play a role in understanding some aspects of the relation between blackhole physics and topological strings. The insertion in the above analysis of ’t Hooft
fluxes will allow for a comparison with the related non-commutative theories in two
dimensions.
9
8
Trento
Research field: Boundary String Field Theory. (Nardelli, Forini)
Boundary String Field Theory is particularly useful to study off shell string theory
processes, such as tachyon condensation. In this framework we have constructed
the non linear (in the tachyon field) beta function and the corresponding Witten
Shatashvili (WS) action. We have reproduced the exact form of the tachyon potential
as well as small derivative expansion of the WS action. The obtained results are in full
agreement with all conjectures on tachyon condensation. Moreover, this non linear
beta function approach reproduces the correct perturbative on shell amplitudes (e.g.
Veneziano amplitude) when the WS action is expanded in powers of the tachyon
fields.
Among the most promising future developments there are: The generalization
of this procedure to include the vector field; the study of quartic and sextic soliton
solutions for the tachyon field describing multi-branes configurations as consistent
string backgrounds; the investigation of time dependent conformal solutions close to
the tachyon mass shell (i.e. rolling tachyons).
9
Trieste
Scientific Activity of Ugo Bruzzo:
Localization Formulas and Multi-Instanton Calculus
Already in 2000 Bellisai, Fucito, Tanzi e Travaglini advocated the use of localization formulas for the study of multi-instanton calculus but there were problems
due to the presence of singularities in the moduli space of framed instantons. It was
suggested by Dorey to resolve the singularities of the moduli space of instantons using the invariance of the original BRST exact theory. These ideas were applied by
Hollowood who computed the k = 1, 2 cases. A last crucial ingredient was provided
by Nekrasov: localization techniques are most powerful when the critical points of
the action of the action of the relevant group are isolated.
Building on these ideas, in 2002 the localization formula for the equivariant de
Rham cohomology was used by Bruzzo, Fucito, Morales and Tanzini to compute
the partition function of a twisted N=2 SYM theory. Also the partition functions
10
of an N=2* and an N=4 model were computed. Subsequently Bruzzo and Fucito,
and Bruzzo, Rossi and Roubtsov (still unpublished) proved generalized localization
formulas for the equivariant cohomology of Lie algebroids.
The aim of the present project is to further develop the theory of localization and
use it to compute the partition function and other quantities of physical interest for
a number of supersymmetric models, including the N=1 case (which however is quite
controversial), some vortex models and others.
10
Bari
Out-of-Equilibrium Field Theories
In past years we studied dynamical properties of field models in strong out of
equilibrium conditions, e. g. systems that are quenched to a temperature below
the critical point. We used both numerical tecniques (taking also into account
hydrodynamical effects) and analytical calculations (selfconsistent dynamical
field, 1/N expansion). Fluctuation-dissipation relations and correlation functions behaviour have been studied analitically in the case of a scalar field that
undergoes a sudden cooling. In the future we plan to study, in the framework
of the time dependent Landau-Ginzburg models, the dynamical properties of
scalar fields that are characterized by homogeneous or lamellar ground states.
The critical properties of a class of statistical models having non gibbsian stationary state will also be studied.
Phase transitions and non equilibrium statistical Mechanics
The research activity regards the macroscopic evolution of statistical system
having chaotic behaviour at microscopic level. In particular we are interested
to phase ordering in lattices of chaotic maps (CML) (see, for example, the Proceedings of the Paris Workshop on Lattice Dynamics in Physica D 103 (1997))
which have two symmetric attractors; in this case one can associate an Ising spin
to each map. In particular two systems of this kind are being considered. In
the first case the order parameter is conserved and Kawasaki dynamics is used
in the coarsening process. In the second case the local maps interact through
diffusive coupling in presence of additive noise. The effect of noise on the phase
ordering is studied. New results have been obtained also using a dynamics that
11
corresponds to the discretization of the Cahn-Hilliard equation, that describes
the evolution of continuous systems in presence of a conservation law. We have
shown that these systems have important analogies with spin statistical systems and that the dynamics introduces an antiferromagnetic effective coupling
that, as in the Ising model, is capable to generate superantiferromagnetic (SAF)
ordering.
Statistical Mechanics applications to high energy physics
We have considered statistical system composed of two classes of elements that
have no interaction with elements of the same class, while elements of the different classes have a coupling that depends on the distance between them. This
systems have an application in the analysis of events in high energy scattering.
Here particles in the final states belongs to one class and jets to the other one.
On this basis one can show that the algorithms currently used by experimental
physicists in this field can be reduced to a variational principle. This fact could
have a practical consequence, in the form of an algorithm that needs execution
times with a very weak dependence from the particle multiplicity of the events.
This is very appealing for particle physics at the new generation of colliders and
a first results in this direction have been obtained.
Variational methods in field theory and foundations
In a recent paper, some generalized forms of stochastic and quantum mechanics have been obtained, through variational extensions of classical mechanics
of particles, based on a reformulation of the Hamilton principle. This scheme
is based on two ingredients, a lagrangian density and a balance equation, and
appears to be an effective approach for the analysis of more general evolution
phenomena. It is planned to reconsider, from this point of view, the problem
of quantization of fields. At the classical level, it can be shown that the approach recovers formal aspects of the De-Donder Weyl theory in the calculus
of variations. So it is planned to investigate natural extensions of this theory
to stochastic and quantum structures. At the same time some recent results of
Jackiw and coll. concerning the formulation of non abelian fluid dynamics will
be taken into account.
(Angelini, Gonnella, Pellicoro, Villani).
12
Codice
Esperimento
Gruppo
PI62
4
Rapp. Naz.: Kenichi Konishi
ISTITUTO NAZIONALE DI FISICA
NUCLEARE
Preventivo per l'anno 2005
PREVISIONE DI SPESA
Piano finanziario globale di spesa
In KEuro
ANNI
FINANZIARI
2005
TOTALI
Mod EC./EN. 6
Spese
Materiale
Affitti e
Materiale
Trasporti e
Missioni
Missioni
di
di
Inviti
manutenzione inventariabile
facchinaggi
interne
estere
calcolo
consumo
19,5 14,0
44,5
19,5 14,0
44,5
0,0
0,0
0,0
0,0
0,0
TOTALE
Compet.
78,0
78,0
(a cura del responsabile nazionale)
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
BA
Codice
Esperimento
PI62
Resp. loc.: Leonardo Angelini
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
1
2
3
4
Qualifica
Affer.
RICERCATORE Dipendenti
Incarichi
al
%
Cognome e Nome
gruppo
.
Art.
23
Ruolo
Ricerca Assoc
Angelini Leonardo
Gonnella Giuseppe
Pellicoro Mario
Villani Matteo
P.A.
P.A.
P.A.
P.O.
4
4
4
4
80
80
50
100
N
TECNICI
Cognome e Nome
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
0
0
%
Collab.
Assoc. tecnica
tecnica
4 Numero totale dei Tecnici
3.1 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
TECNOLOGI
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
FI
Codice
Esperimento
PI62
Resp. loc.: Marcello Ciafaloni
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
1
2
3
4
5
Qualifica
Affer.
RICERCATORE Dipendenti
Incarichi
al
%
Cognome e Nome
gruppo
.
Art.
23
Ruolo
Ricerca Assoc
Caporaso Nicola
D.R.
Cappelli Andrea
Ciafaloni Marcello
Seminara Domenico
Valtancoli Paolo
Dott.
P.O.
R.U.
R.U.
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
4
4
4
4
4
100
30
30
100
100
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
TECNICI
Cognome e Nome
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
0
0
%
Collab.
Assoc. tecnica
tecnica
5 Numero totale dei Tecnici
3.6 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
N
TECNOLOGI
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
MI
Codice
Esperimento
PI62
Resp. loc.: Luca Molinari
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
Qualifica
Affer.
RICERCATORE Dipendenti
Incarichi
al
%
Cognome e Nome
gruppo
.
Art.
23
Ruolo
Ricerca Assoc
1 Molinari Luca
R.U.
4
N
TECNOLOGI
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
100
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
Cognome e Nome
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
%
Collab.
Assoc. tecnica
tecnica
1 Numero totale dei Tecnici
1 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
TECNICI
0
0
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PD
Codice
Esperimento
PI62
Resp. loc.: Antonio Bassetto
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
1
2
3
4
5
RICERCATORE
Cognome e Nome
Qualifica
Dipendenti
Incarichi
Affer.
al
. gruppo
%
4
4
4
4
4
100
100
50
100
100
N
Ruolo Art. 23 RicercaAssoc
P.O.
BASSETTO Antonio
DE POL Giancarlo
MARCHETTI Pieralberto
MATONE Marco
TORRIELLI Alessandro
AsRic
P.A.
R.U.
B.P.D.
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
TECNICI
Cognome e Nome
0
0
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Collab.
tecnica
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
%
Assoc.
tecnica
5 Numero totale dei Tecnici
4.5 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
TECNOLOGI
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PI
Codice
Esperimento
PI62
Resp. loc.: Kenichi Konishi
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
1
2
3
4
5
6
7
8
Qualifica
Affer.
RICERCATORE Dipendenti
Incarichi
al
%
Cognome e Nome
gruppo
.
Art.
23
Ruolo
Ricerca Assoc
Auzzi Roberto
Bolognesi Stefano
Brosco Valentina
Halat Milenko
Konishi Kenichi
Marmorini Giacomo
Vinci Walter
Yokoi Naoto
Dott.
Dott.
Dott.
Dott.
P.O.
Dott.
Altro
B.P.D.
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
4
4
4
4
4
4
4
4
100
100
100
100
100
100
100
100
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
TECNICI
Cognome e Nome
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
0
0
%
Collab.
Assoc. tecnica
tecnica
8 Numero totale dei Tecnici
8 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
N
TECNOLOGI
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
RM2
Codice
Esperimento
PI62
Resp. loc.: Francesco Fucito
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
RICERCATORE
Cognome e Nome
Qualifica
Dipendenti
Incarichi
Affer.
al
gruppo
.
Art.
23
Ruolo
Ricerca Assoc
1 D'Alessandro Marco
2 Fucito Francesco
D.R.
Dott.
4
4
%
100
40
N
TECNICI
Cognome e Nome
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
0
0
%
Collab.
Assoc. tecnica
tecnica
2 Numero totale dei Tecnici
1.4 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
TECNOLOGI
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
TS
Codice
Esperimento
PI62
Resp. loc.: Ugo Bruzzo
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
Qualifica
Affer.
RICERCATORE Dipendenti
Incarichi
al
%
Cognome e Nome
gruppo
.
Art.
23
Ruolo
Ricerca Assoc
1 BRUZZO Ugo
P.O.
4
N
TECNOLOGI
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
100
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
Cognome e Nome
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
%
Collab.
Assoc. tecnica
tecnica
1 Numero totale dei Tecnici
1 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
TECNICI
0
0
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
PR
Codice
Esperimento
PI62
Resp. loc.: Luca Griguolo
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
1
2
3
4
5
Qualifica
Affer.
RICERCATORE Dipendenti
Incarichi
al
%
Cognome e Nome
gruppo
.
Art.
23
Ruolo
Ricerca Assoc
Bonini Marisa
Calcagni Gianluca
Cicuta Giovanni
Griguolo Luca
Pasquetti Sara
R.U.
Dott.
P.O.
R.U.
Dott.
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
4
4
4
4
4
100
100
100
100
100
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
TECNICI
Cognome e Nome
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
0
0
%
Collab.
Assoc. tecnica
tecnica
5 Numero totale dei Tecnici
5 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
N
TECNOLOGI
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA NUCLEARE
Preventivo per l'anno 2005
Struttura
TN
Codice
Esperimento
PI62
Resp. loc.: Giuseppe Nardelli
Gruppo
4
COMPOSIZIONE DEL GRUPPO DI RICERCA
N
RICERCATORE
Cognome e Nome
Qualifica
Dipendenti
Incarichi
Affer.
al
%
gruppo
.
Art.
23
Ruolo
Ricerca Assoc
1 FORINI Valentina
2 NARDELLI Giuseppe
Dott.
R.U.
4
4
100
100
N
TECNICI
Cognome e Nome
Qualifica
Incarichi
Dipendenti
Ruolo Art. 15
Annotazioni:
mesi−uomo
Osservazioni del direttore della struttura in merito alla
disponibilità di personale e attrezzature
Mod EC./EN. 7
0
0
%
Collab.
Assoc. tecnica
tecnica
2 Numero totale dei Tecnici
2 Tecnici Full Time Equivalent
SERVIZI TECNICI
Denominazione
Cognome e Nome
Qualifica
Incarichi %
Ass.
Ruolo Art. 23
Tecnol.
Dipendenti
Numero totale dei Tecnologi
Tecnologi Full Time Equivalent
N
Numero totale dei ricercatori
Ricercatori Full Time Equivalent
TECNOLOGI
(a cura del responsabile locale)
0
0
ISTITUTO NAZIONALE DI FISICA
NUCLEARE
Preventivo per l'anno 2005
Codice
Esperimento
Gruppo
PI62
4
Rapp. Naz.: Kenichi Konishi
MILESTONES PROPOSTE PER IL 2005
Data
completamento
Mod EC./EN. 8
Descrizione
(a cura del responsabile nazionale)