Download Wave optic and basics of TEM

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Wave optic and basics of TEM
Etienne SNOECK
CEMES - Toulouse
CEMES -CNRS
29, rue Jeanne Marvig
31055 Toulouse
email: [email protected]
http://www.cemes.fr
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Wave optic and basics of TEM
•
Wave - particles dualism
•
Electron – matter interactions
•
•
•
single atom electron scattering
•
electron diffraction
Electron optics
•
TEM column
•
Magnetic lenses
Image formation and aberration
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
1
The beginning…
1897: J. J. Thomson discovered the electrons by studying the «cathodic beams »
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
The beginning…
1925: Louis de Broglie introduced the matter and wave-particle duality
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
2
The beginning…
1927: C. Davisson and L. Germer showed the wave behaviour of electrons
Electron wave lengths vs acceleration voltage
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
The beginning…
Electrons are particles
•
Mass me and kinetic energy: 1/2 mev2
•
Electric charge -e and electrostatic energy: eV
•
Submited to electrostatic force : F = -e.E
•
Submited to magnetic force : F = -eVB
•
Interact with the electrons cloud and nucleus of atoms
•
Can be localized
Electrons are waves
•
Wave lenght :  = h/mv
•
Interferences
•
Cannot be localized
•
Diffraction by periodical lattices
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
3
Waves
Spherical wave
Plane wave
k=1/
Wave front
S
Wave front

k
S
k
Ponctual source
« Extented » source



 

 ( r , t )  Ar  exp i t  k  r   ( r )
Wave function
Amplitude

Propagation
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Interferences
Plane wave
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
4
Interferences
Electrons are particles and waves
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Wave optic and basics of TEM
•
Wave - particles dualism
•
Electron – matter interactions
•
•
•
single atom electron scattering
•
electron diffraction
Electron optics
•
TEM column
•
Magnetic lenses
Image formation and aberration
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
5
Electrons are particles
What do an electron see when entering a crystal ?
atom
k0
nucleus

k’
Electron cloud screening
2
4π
with
4π
2
Atoms = Scattering centers : essentialy the nucleus positively charged
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
What do an electron see when entering a crystal
Mean inner
potential
Electrons are particles
Vi
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
6
What do an electron see when entering a crystal
Electrons are particles
 An highly localised positive potential
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
What do an electron see when entering a crystal
Electrons are waves
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
7
Electrons are waves
What do an electron see when entering a crystal
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Electrons are waves
What do an electron see when entering a crystal
S1
S2

Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
8
Electrons are waves
What do an electron see when entering a crystal
Electron wave
Pure « Amplitude » object
Pure « Phase » object
I ( x )    *  a 2
2
Measured intensity :
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Huygens-Fresnel principle
Huygens contribution (1678)
The light propagates step by step. Every element of surface diffuses and behaves as a secondary source of spherical waves.
Fresnel contribution (1818)
The complex amplitude of the wave at a specific point is the sum of the complex amplitudes of the vibrations produced by all the secondary sources. These vibrations interfere to form the vibration in the considered point. • wave at point « M »:
 M    0 exp  it
with 0 complex amplitude and  = 2 the wave frequency
S

r
M
dS


n

P
 wave at point « P »:
exp i 2 k r
 ( P )   M Q
dS
r
S
with •
•
•
•
r = MP
k = 1/
dS surface element @M
Q a diffusion coefficient
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
9
Rutherford diffusion
Electrons are particles
Rutherford diffusion :

X rays (single Si atom) :
Electrons
s (nm-1)
s (nm-1)
f i X ( s )   A j exp( B j s 2 )  C
me 2  2
f ei ( )  2 (
) ( Zi  fi X )
2h sin 
Doyle-Turner coefficient
Huge electron –matter Interaction
4
j 1
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Waves and rays
Electrons are waves
Incident plane wave on a single atom
Incident plane wave on a 1D periodic array of atoms
atom
k0
k’
k0
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
10
Rutherford diffusion
Electrons are particles

+ interference
a
s (nm-1)
s (nm-1)
f ei ( ) 
me 2  2
(
) ( Zi  fi X )
2h 2 sin 
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Rutherford diffusion
Electrons are particles

+ interference
a'
s (nm-1)
s (nm-1)
1/a’
me 2  2
) ( Zi  fi X )
f ei ( )  2 (
2h sin 
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
11
Waves and rays
Electrons are waves
Incident plane wave on a periodic 3D array of atoms
k0
kB


Path difference : 2
= 2d.sin
d
 
Constructive interferences : = n.
d.sin
2d.sin n.
k0
d ~ 10-10 m
 ~ 10-12 m
  ~ 10-3 rad (sinB= B )
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Atomic diffusion
The crystal contains n atoms. Each atom j in
as only elastic diffusion is considered

rj creates an elastic diffusion of the wave


k0  k

Incident beam k 0
•
 phase shift relative to the original wave
•
fj atomic diffusion factor


k
Diffused beam
Atom
• The diffused wave function by the atom j is:
:

k

rj

 j ( r , t )   0 exp  i t   r . f j
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
12
Atomic diffusion
Total phase shift of the diffused wave in « r »
P

r
o
 
r  ri

k

k0 
2
rj
1
2 contributions :
 
  
2  2 k  r  rj 

r j : phase shift 1 of the incident wave relative to the origin:


Phase shift 2 of the diffused wave between the atom in r j and the point r
1  2 k0  rj
• 0 
•
Total phase shift:

 
 





 
 r   1  2  2 k0  rj  k  r  rj   2 k  k0  rj  k  r



Diffraction vector: Difference between the diffused wave vector k and the incident wave vector k0
  
K  k  k0
P

r


k0  k

K

k0 
o
1

k
rj
2
 
r  ri

Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Atomic diffusion
  
K  k  k0
Wave function in « r » due to the diffusion of the atom in rj
 


i 2  K r j
 j ( r , t )   0 exp i t 2 k r  . f j exp
o

k0 
1
P

r

K

k
rj
 
r  ri
2
• For the cristal (n atoms): the diffracted beam tot is the sum of the diffused waves by the n atoms.
 ( r , t )   j ( r , t )   0 exp i t 2 k r  .  f j exp

n
j 1


n
 
i 2  K r j
j 1
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
13
Diffraction
Electrons are particles and waves
 ( r , t )   j ( r , t )   0 exp i t 2 k r  .  f j exp


n

j 1
n
 
i 2  K r j
j 1

Diffraction by the crystal with n atoms located on the « j » position :r j

FK   f e j ( ) exp(  B j 2 ) exp( 2iK .rj )
j
B j  8 2 u 2
  
r j  ru  Rm,n , p
Periodic crystal

ru
u2
Debye-Waller due to the atom vibration




 xu , yu , zu  0,1 




R

m
a

n
b

p
c
vector of the lattice:
m ,n , p
vector of the unit cell: ru  xu a  yu b  zu c
with
O
(m, n, p integers)
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Diffraction
FK 
Electrons are particles and waves
 
 exp i 2 K  R
m ,n , p
m ,n , p
S(K ) 
 
.  f eu ( ) exp(  Bu 2 ) exp i 2 K  ru
u
 
 exp i 2 K  R
m ,n , p
m ,n , p
 
F ( K )   f eu ( ) exp(  Bu 2 ) exp i 2 K  ru
u
Structure Factor (unit cell)
Form Factor (whole crystal)
The total diffracted intensity in a direction « K » is given by


 2
I   ( r , t )*. ( r , t )   ( r , t )
=>
 

I F K
2
 

S K
2
Yes in x-ray diffraction BUT… generally not in TEM
Maximal when K corresponds to a node of the reciprocal lattice


K  K hkl  h a  k b  l c

 Laue conditions
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
14
Wave optic and basics of TEM
•
Wave - particles dualism
•
Electron – matter interactions
•
•
single atom electron scattering
•
electron diffraction
Electron optics
•
TEM column
•
Magnetic lenses
•
Diffraction pattern formation
•
Image formation and aberration
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Why microscopy with electrons ?
Diffraction through a circular aperture
•
First minimum at sin  
1, 22 
a
« a » being the aperture diameter
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
15
Why microscopy with electrons ?
Resolution
Two ponctual sources could be separated if their diffraction figures do not overlap
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Why microscopy with electrons ?
Rayleigh criterium
•
The two images are just separated when the central
maximum of one diffraction figure overlap with the
first minimum of the other
•
The angular switching between the two sources
corresponding to Rayleigh criteria is :
c 
1, 22 
a
Lord Rayleigh (1842-1919)
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
16
Why microscopy with electrons ?
c 
1, 22 
a
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Why microscopy with electrons ?
c 
1, 22 
a
Increase the resolution  decrease the wavelength of the radiation
(X-Ray : 10-10 - 10-12 m but no lenses !!)

h
mv
 Use « fast » electrons
Gun, electromagnetic lenses, etc…
microscope
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
17
How to focalize electrons ?
Wehnelt and Gabor: using electric and magnetic fields
1927: Beginning of electron optic: by Hans Busch « an
electromagnetic field has the same effect on an electron than an
optic lens on a light beam »
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
TEM : the beginning…
Ernst Ruska et Max Knoll worked at TH Berlin, early
30es
Oscilloscope with a small intense spot and a fast scan
1931: Ruska get a first X14.4 magnified image.
Ruska E (translated by Mulvey T). The early development of electron lenses and
electron microscopy. Stuttgart: Hirzel, 1980.
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
18
TEM : the beginning…
D’après Knoll et Ruska, Ann. Phys. 12, 607, 1932
1932: Vertical microscope
Higher magnification than an optical (12000 X )
•
•
•
•
•
Cold cathod (glow discharge) 65kV
Condenser
Objective
Projector
Fluorescent screen
Ruska, E, Z. Physik 87, 580-602 (1934)
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
TEM
Optical microscope
TEM
Def
Gun
Source
Def
Beam
Sample
Def
Image
Diff
Optical column
Def
Proj
Gun + High tension
Condensor Part
C1+C2
Condensor aperture
Objective Part
Objective aperture
Diffraction Part
Diff + inter
SAED aperture
Shutter
Projector Part
P1+P2
Detector
Detector
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
19
TEM
Increasing the resolution …


h
mv
v
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
20
The TEM column
A TEM = 6 parts + deflectors to
align each part each other
Def
Gun
Gun + High tension
Part of the column
Bloc
Line tube
Condensor Part
C1+C2
Def
Beam
Condensor aperture
+
Def
Image
Diff
=
+
Objective Part
Polar piece
Objective aperture
Diffraction Part
Diff + inter
Def
Proj
SAED aperture
Projector Part
P1+P2
Shutter
Detector
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
The electron source
Def
Gun
Def
Beam
Gun + High tension
Condensor Part
C1+C2
Condensor aperture
Def
Image
Diff
Objective Part
Objective aperture
Def
Proj
Diffraction Part
Diff + inter
SAED aperture
Projector Part
P1+P2
Shutter
Detector
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
21
Thermoionic source
Electron acceleration
Schematic representation
Metallic filament heating
Filament
Vacuum
Increase the
T°K
Exit work = f

E
Fermi Level
Fermi-Dirac distribution
change with T°K
Real design
Filament
Whenelt
8mm
W filament
T  2800 K
  4,5eV
Cross over
LaB6 filament
T  2000 K
  2,5eV
Anode
10 7 Torr
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Cold Field Emission Gun (CFEG)
Real design
Supressor
Tip
Emission process :
Schottky effect
Fermi-Dirac
distribution
at 300K
Tunneling effect
Extractor
10 11Torr
Fowler-Nordheim law
jFN 
4me 2
 b 
d exp  
h3
 d 
d
b  c2
c1 F
 f ( F , )
 3/ 2
F
g ( F , )
W <310>
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
22
CFEG issues
I-a
I-b-c-d
II
II
Arc
I
Solution : flash
to heat the tip with a
current during some
seconds
Technology more
difficult
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Comparison between sources
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
23
Electromagnetic lenses
Def
Gun
Def
Beam
Gun + High tension
Condensor Part
C1+C2
Condensor aperture
Def
Image
Diff
Objective Part
Objective aperture
Def
Proj
Diffraction Part
Diff + inter
SAED aperture
Projector Part
P1+P2
Shutter
Detector
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Principle of electromagnetic lenses
Electrons rotation
+ focalisation
e
Real design of a lens
coil + plugs + cooling + polar piece
Power supply
Water
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
24
Basic geometrical optic
Magnetic lens = thin convergent optical lens
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Magnetic lens focalisation
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
25
Magnetic lens focalisation
Main advantage of electromagnetic lenses : the focal length is tunable with the lens current !!
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Illumination system of the column
Def
Gun
Def
Beam
Def
Image
Diff
Def
Proj
Gun + High tension
Condensor Part
C1+C2
Condensor aperture
Objective Part
Objective aperture
Diffraction Part
Diff + inter
SAED aperture
Shutter
Projector Part
P1+P2
Detector
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
26
Illumination system of the column
1. Spot Size : Condensor 1
C1 Strength
Spot size
2.
Intensity: Condensor 2
C2 Strength change the illumination area and the convergence angle
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Illumination system of the column
Sample illumination and convergence angle of the electron beam change
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
27
Objective lens
Def
Gun
Def
Beam
Def
Image
Diff
Def
Proj
Gun + High tension
Condensor Part
C1+C2
Condensor aperture
Objective Part
Objective aperture
Diffraction Part
Diff + inter
SAED aperture
Shutter
Projector Part
P1+P2
Detector
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Objective lens
The objective lens transfers two informations:
•
 image in the image plane
•
 Fraunhofer diffraction in the focal plane
Object plane
Object
Conjugated
planes
f
Focal plane
Fourier Transform (FT)
of the object : diffraction pattern
Image plane
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
28
The diffraction lens and the projection system
Def
Gun
Gun + High tension
Condensor Part
C1+C2
Def
Beam
Condensor aperture
Def
Image
Diff
Objective Part
Objective aperture
Diffraction Part
Diff + inter
Def
Proj
SAED aperture
Projector Part
P1+P2
Shutter
Detector
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
The diffraction lens and the projection system
« diffraction » mode
« imaging » mode
1/p1 + 1/p2 = 1/f
objective
Focal plane
p’1
Image plane
Diffraction lens
p1
f
f’
p2
Adjusting the focal lenght of the diffraction lens, one can get either the image plane or the focal plane (diffraction)
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
29
The diffraction lens and the projection system
• Diffraction lens : select the image or the diffraction plane (Diffraction control)
• Intermediate lens + Projector 1 and Projector 2 change the magnification or the camera length
Cross over of the Gun
Condensor 1
 Spot size
Condensor 2
 Intensity
Minilens
Objective Condensor
 Focus
Objective Image
Diffraction lens
 Diffraction and image mode
Intermediate
Projector 1
 Magnification
Projector 2
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Wave optic and basics of TEM
•
Wave - particles dualism
•
Electron – matter interactions
•
•
•
single atom electron scattering
•
electron diffraction
Electron optics
•
TEM column
•
Magnetic lenses
Image formation and aberration
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
30
High Resolution Imaging
e–
Incident Electron
wave
Crystal
Crystal
2q
Lens
Exit Wave function
e–
Screen
Depends on
•
Aberrations
•
Atomic potential
•
Defocalization
•
Diffusion
•
Beam incoherences
•
Diffraction
•
Phase shift
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
High Resolution Imaging : electron wave within the object
e–
 (r , z )  e iKz
 (r)
e–
 (r, z )   (r )eiKz
 exit (r )
Exit Wave function
Diffracted beams
~ ( k )
 exit (r )   k ~( k ) exp( 2ik.r )
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
31
High Resolution Imaging : electron wave in the column
 o  exp(iK.r )
Object
obj  ao (r) expi( K .r  o (r))
Objective
 s  As( r )exp i ( K .r  s( r ))
Focal plane
Intermediate lenses
& projector
I(x,y) s   As2(r)
2
 s (r )
is lost
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
High Resolution Imaging
~
s (r)  gexp{2ig.r}
g
Wave function on the detector
Diffracted beams
I (r)  s (r)
2
~ ~
 gg*exp{2i(g  g).r}
Measured intensity
g
g
• The contrast is due to the interferences
between the g and g’ diffracted beams
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
32
Single crystal in zone axis
 
0  g2
 
0  g1
 
0  g3
 
g1 g3
 
0 g2
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
High Resolution Imaging: interferences + TEM aberrations
exit(r)  ~gexp{2ig.r}
g
Exit wave function
Diffracted beams
(r)  ~gei (g)exp{2ig.r}
g
Image wave function
on the detector
Tranfert function
I(r)  (r) 2
Image intensity
•
The objective lens aberrations modifies the phase
of the exit wave  phase plate
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
33
Lens Aberration
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Spherical Aberration
Disk of
least
confusion
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
34
Spherical Aberration
In optical microscopy: Convergent lens + divergente lens
Divergent lens in TEM ???
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Spherical Aberration
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
35
Spherical Aberration delocalisation
Pb with surface and interface
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Chromatic Aberration
Slow electrons
Fast electrons
Lack of resolution
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
36
Axial Coma and First order Astigmatism
C2
The coma (off-axial aberration)
C2’
I
C1’
C1
O
Astigmatism and field curvature (On and Off axial aberrations) :
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Anisotropic aberrations
Anisotropic coma, anisotropic astigmatism, anisotropic distorsion
Due to the helicoïdal trajectories of the electrons inside the lenses
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
37
Aberrations : wavefront description
• Focalisation (first order effect) C1
C1
• Spherical aberration C3 (Cs), C5, etc … and
• Chromatic aberration (Cc)
C3=Cs
and …
A1
• Off-axial aberrations
• Astignatism and field curvature (A1, A2, etc ..)
• Coma (B2, B4, etc …)
B2
A2
A3
• High order aberrations (S3,D3, …)
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
The first order astigmatism correction: the stigmator
Quadrupole lenses :
Huge elliptic beam
Round beam
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
38
The first order astigmatism correction: the stigmator
Size of the line tube
2 quadrupoles  stigmator (correction of A1)
Uncorrected spot
Corrected spot
Qpol X
Qpol Y
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Spherical aberration correction: see Max Haider lecture
Non cylindrical lenses :
Quadrupoles, Octopoles
Hexapoles
Dodecapoles
Two major effects
• Negative C3
• Huge A2
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
39
High Resolution Imaging: interferences + TEM aberrations
(r)  ~gei (g)exp{2ig.r}
g
C1
C3=Cs
B2
A1
C1 + C3
A2
A3
+ A1(astigmatism)
 (g )
+ B1 (coma)
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Phase plate
 (g )
Scherzer focus
Zero focus


Cs = 1.34mm C1 = 0
Cs = 1.34mm C1 = -60nm (@300kV)
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
40
Contraste transfert function
sin g 
C1 = 0 nm
C1 = – 60 nm
1
(1.8Å)–1
–1
g
g
Scherzer focus
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Exple : CdSe crystal
C = 0 nm
C = – 60 nm
Cd
S
•
Complicated and non trivial contrast at Gaussian focus
•
The HREM image at Scherzer focus is the negative of the projected
potential
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
41
Phase plate: astigmatism
C1 = – 60nm
A1 = 0
+ A1 = 80nm
Scherzer focus + A1 = 80nm
 (g)

Cd
Cd
Cd
S
S
S

The effect of the objective lens is not symetric
 Looks like a bad sample alignement….
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Phase plate: Coma
C1 = – 60nm
B2 = 0
+ B2 = 1000nm
Scherzer focus + B2 = 1000nm
 (g ) 
Cd
Cd
S
S

incident beam
The central beam is not aligned along the optic axis
crystal
 The g and –g diffracted beam have not the
same phase
lens
 The symetry is broken
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
42
Cs Aberration corrector
Cs = 1.34 mm - C1 = 0
Cs = 0 nm - C1 = 0


0.5 nm
0.5 nm
5 nm
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Cs Aberration corrector
HubbleTelescope
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
43
Advanced TEMs
Gun
Cond
Biprism 1
Condensor aperture 1
Stigm Cond
Condensor 1
Condensor 2
Probe Cs corrector
Condensor aperture 2
Condensor 3
Condensor Objective
Large pole piece gap for in situ (10 mm)
Contrast aperture
Obj
Objective Image
Stigm obj
Transfert lens doublet 1
Short hexapole 1
Transfert lens doublet 2
Image Cs corrector
Long hexapole
Transfert lens doublet 3
Short hexapole 2
Transfert lens doublet 4
Diff
Stigm diff
Biprism 2
SA aperture
Intermediate lens 1
Biprism 3
Proj
Intermediate lens 2
Biprism 4
Intermediate lens 3
Detector
Projector 1
Projector 2
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
Advanced TEMs
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
44
Wave optic and basics of TEM
The end
email: [email protected]
http://www.cemes.fr
Dr. Etienne SNOECK - CEMES - Toulouse
CEMES - Toulouse
45
Related documents