Download Math College Algebra Practice Exam 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
KYOTE College Algebra Practice Exam 1
1. Which of the following equations has the same solution as 5 x + 8 = x − 9?
A) 4 x = −1
B) 4 x = 17
C) 6 x = −17
D) 6 x = 17
E) 4 x = −17
2. Simplify. (−2 x4 )3 (−2x2 )2
A) 8 x11
B) 8 x16
C) −32 x16
D) 32 x16
E) −32 x11
√
3. If f (x) = 7 − x, then which of the following sets is the domain of this function?
A) x ≤ 7
B) x 6= 7
D) x 6= 0
E) x ≥ 7
C) x ≥ 0
4. One of the factors of 3 x2 + 8 x − 35 is
A) 3 x − 7
B) 3 x + 7
D) 3 x + 5
E) x − 5
C) x − 35
5. One solution of 3 x2 + 7 x − 6 = 0 is
A) −2
3
B) 32
D) −6
E) 23
6. Solve
C) 3
1
2
− = 3 for x.
x−1 7
26
A) 23
B) −12
23
30
D) 23
E) 23
30
C) 23
26
1
7. Expand and simplify. (3 x − 6 y)2
A) 9 x2 − 36 x y − 36 y 2
B) 9 x2 + 36 y 2
D) 9 x2 − 18 x y + 36 y 2
E) 9 x2 − 36 y 2
C) 9 x2 − 36 x y + 36 y 2
8. The line parallel to 2 x + y = 5 and passing through (5, 4) has equation
A) y = 2 x − 6
B) y = −2 x + 14
D) y = −2 x + 13
E) y = −2 x − 6
9. Simplify.
C) y = 2 x − 3
x2 − x − 30
x2 − 12 x + 36
A)
x+6
x−6
B)
x+5
x−6
D)
x + 30
x−6
E)
x−5
x−6
C)
x − 30
x−6
10. The vertices of a triangle consist of the three points where the parabola y = 7 − x2 intersects the
coordinate axes as shown. What is the area of this triangle?
y
√
A) 14 7
√
B) 7 2 7
√
D) 7 7
E) 49
x
C) 98
11. Simplify. (−3x−5 )2 (2 x3 )−2
9
4 x16
A) −6
x16
B)
D) −916
4x
E) −6
x12
C)
9
4 x12
2
12. Which of the following is an equation of the line whose graph is shown below?
Y
5
A) y = −2 + 52 x
B) y = 2
5x
C) y = 5 + 25 x
D) y = 5 + 2
5x
E) y = −2 + 5
2x
X
–2
13. If x and y satisfy both 9 x + 2 y = 8 and 7 x + 2 y = 4, then y =?.
A) 9
B) 2
C) 18
D) −5
E) −10
14. Solve −7 x < x + 7 and express the solution in interval notation.
A) ( −7
6 , ∞)
B) ( −7
8 , ∞)
D) ( −8
7 , ∞)
E) (−∞, −6
7 )
C) (−∞, −7
8 )
15. If the hypotenuse of a right triangle has length 9 feet and one of the other sides has length 2 feet,
what is the length of the remaining side, in feet?
A) 7
√
B) 11
√
D) 85
√
E) 77
√
C) 7
16. Solve R = 47 T + −36
7 for T .
A) 74 R + 9
B) 74 R + 63
4
D) 47 R − 9
E) 7
4R+9
C) 74 R + 36
7
3
17. Simplify.
8x
6
+
x+4
x + 9 x + 20
2
A)
8x + 6
x + 10 x + 24
B)
8x + 6
x + 9 x + 20
D)
14 x + 30
x + 9 x + 20
E)
14 x + 6
x + 9 x + 20
2
2
C)
2
14 x
x + 9 x + 20
2
2
18. If x and y are positive numbers, then
√
2 x8 6
A) ±
y4
√
2 x5 6
B) ±
y3
√
2 x5 6
D)
y3
√
2 x8 6
E)
y4
p
24x10 y −6
√
C) −2 x5 y 3 6
19. If f (x) = 2 x + 9, and f (a) = 7, then a =?
A) 9
B) 23
D) 7
E) 8
C) −1
20. Find 12(x)2/3 when x = −8.
A) 64
B) 48
D) 256
E) −64
C) −48
21. A rectangular field is enclosed by 320 feet of fencing. If the length of the field is 6 feet more than its
width, what is its length, in feet?
A) 80
B) 83
D) 157
E) 163
22. Find
C) 77
(x − (1 − 4 x))
when x = −5.
x
A) 26
5
B) −21
D) −26
5
E) −14
5
C) 19
4
23. The surface area S of a cylinder is S = 2 π r 2 + 2 π r h where r is the base radius and h is the height.
What is h, in inches, when S is 175 square inches and r is 6 inches?
864 π 2
A) 175 −
12 π
864 π 2
B) 175 +
12 π
25
D) 12
π
− 72 π
E) 17512
π
+ 72 π
C) 17512
π
24. A truck leaves an intersection going 42 miles per hour. Half an hour later, a car going 62 miles per
hour follows the truck. If x is the time, in hours, required for the car to catch the truck, then which of
the following equations can be used to solve for x?
A) 42 x + 21 = 62 x
B) 42 x + 1
2 = 62 x
D) 42 x + 42 = 62 x
E) 42 x + 30 = 62 x
C) 42 x + 62 = 62 x
25. Subtract x3 − 5 x2 + 1 from x2 − x − 4.
A) − x3 + 6 x2 − x − 3
B) x3 − 4 x2 + x + 5
D) − x3 + 6 x2 − x − 5
E) − x3 − 4 x2 − x − 5
5
C) x3 − 6 x2 + x + 5
Key: KYOTE12CART1
1)
6)
11)
16)
21)
⋄ E
⋄ D
⋄ B
⋄ E
⋄ B
2)
7)
12)
17)
22)
⋄ C
⋄ C
⋄ A
⋄ D
⋄ A
3)
8)
13)
18)
23)
⋄ A
⋄ B
⋄ D
⋄ D
⋄ E
4)
9)
14)
19)
24)
⋄ A
⋄ B
⋄ B
⋄ C
⋄ A
5)
10)
15)
20)
25)
⋄ E
⋄ D
⋄ E
⋄ B
⋄ D
Standards Table
Standard
KYOTECA.01.3:
KYOTECA.02.3:
KYOTECA.03.3:
KYOTECA.04.3:
KYOTECA.05.3:
KYOTECA.06.3:
KYOTECA.07.3:
KYOTECA.08.3:
KYOTECA.09.3:
KYOTECA.10.3:
KYOTECA.11.3:
KYOTECA.12.3:
KYOTECA.13.3:
KYOTECA.14.3:
KYOTECA.15.3:
KYOTECA.16.3:
KYOTECA.17.3:
KYOTECA.18.3:
Problems
20,22
7,25
2,11
18
4
17
9
1,23
16
14
5
6
13
21,24
15
8,12
10
3,19
Max
2
2
2
1
1
1
1
2
1
1
1
1
1
2
1
2
1
2
Score
Description of Standards
1. KYOTECA.01.3: Evaluate algebraic expressions at specified values of their variables using signed
numbers, rational exponents, order of operations and parentheses.
2. KYOTECA.02.3: Add, subtract and multiply polynomials.
3. KYOTECA.03.3: Simplify algebraic expressions involving integer exponents.
4. KYOTECA.04.3: Simplify algebraic expressions involving square roots and cube roots.
5. KYOTECA.05.3: Factor a polynomial in one or more variables by factoring out its greatest
common factor. Factor a trinomial. Factor the difference of squares.
6. KYOTECA.06.3: Add, subtract, multiply and divide simple rational expressions.
7. KYOTECA.07.3: Simplify a rational expression.
8. KYOTECA.08.3: Solve a linear equation.
9. KYOTECA.09.3: Solve a multivariable equation for one of its variables.
10. KYOTECA.10.3: Solve a linear inequality in one variable.
6
11. KYOTECA.11.3: Solve a quadratic equation.
12. KYOTECA.12.3: Solve an equation involving a radical, a rational or an absolute value expression.
13. KYOTECA.13.3: Solve a system of two linear equations in two variables.
14. KYOTECA.14.3: Solve problems that can be modeled using a linear or quadratic equation or
expression.
15. KYOTECA.15.3: Solve geometry problems using the Pythagorean theorem and the properties of
similar triangles.
16. KYOTECA.16.3: Understand and apply the relationship between the properties of a graph of a line
and its equation.
17. KYOTECA.17.3: Find the intercepts and the graph of a parabola given its equation. Find an
equation of a parabola given its graph.
18. KYOTECA.18.3: Evaluate a function at a number in its domain. Find the domain of a rational
function or the square root of a linear function.
7
Related documents