Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Pauli Pascal Triangle and other Noncommutative Expansions by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ [email protected] With contributions by Gianfranco Arroyo-Orrico and Sergio E. Martinez-Casas Introduction This is document shows algebraic expansions of binomials for operators with different commutation or anticommutation relationships. Standard Pascal Triangle for Scalars First we show the standard Pascal Triangle for commutative algebra: Clear@a, bD; TraditionalForm@Grid@ Table@8 Expand@Ha + bLn D <, 8n, 1, 7, 1<D, Dividers → AllDD a+b a2 + 2 a b + b2 3 a + 3 a2 b + 3 a b2 + b3 a4 + 4 a3 b + 6 a2 b2 + 4 a b3 + b4 5 a6 a + 5 a4 b + 10 a3 b2 + 10 a2 b3 + 5 a b4 + b5 + 6 a5 b + 15 a4 b2 + 20 a3 b3 + 15 a2 b4 + 6 a b5 + b6 a7 + 7 a6 b + 21 a5 b2 + 35 a4 b3 + 35 a3 b4 + 21 a2 b5 + 7 a b6 + b7 Coefficients of the standard Pascal Triangle: 2 v7triangles.nb GridA TableA9 expanded = Expand@Ha + bLn D; TableACoefficientAexpanded, an−j bj E, 8j, 0, n<E =, 8n, 1, 7, 1<E, Dividers → AllE 81, 1< 81, 2, 1< 81, 3, 3, 1< 81, 4, 6, 4, 1< 81, 5, 10, 10, 5, 1< 81, 6, 15, 20, 15, 6, 1< 81, 7, 21, 35, 35, 21, 7, 1< In this Pascal triangle each new number is the addition of the two numbers above it. Pauli-Pascal Triangle for Anticommuting Operators We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Press [ESC]anti[ESC] in order to show the anticommutator template (notice the + symbol in the subscript). Here we assign the value of zero to the anticommutator of these two operators: Clear@x, yD; SetQuantumObject@x, yD; Px, yT+ = 0 0 Anticommutating operators generate the Pauli-Pascal Triangle. However, it does not look like a triangle, because the coefficients equal to zero are not shown. Notice that "CommutatorExpand" is used instead of "Expand": TraditionalForm@Grid@ Table@8 CommutatorExpand@Hx + yLn D <, 8n, 1, 7, 1<D, Dividers → AllDD x+ y x2 + y2 x2 y + xy2 + x3 + y3 2 x2 y2 + x4 + y4 x4 y + 2 x3 y2 + 2 x2 y3 + xy4 + x5 + y5 3 x4 y2 + 3 x2 y4 + x6 + y6 x6 y + 3 x5 y2 + 3 x4 y3 + 3 x3 y4 + 3 x2 y5 + xy6 + x7 + y7 v7triangles.nb 3 Next all the coefficients are shown, including the zeros, and the threefold structure of the Pauli-Pascal Triangle can be easily seen: GridA TableA9 expanded = CommutatorExpand@Hx + yLn D; TableACoefficientAexpanded, xn−j ⋅ yj E, 8j, 0, n<E =, 8n, 1, 9, 1<E, Dividers → AllE 81, 1< 81, 0, 1< 81, 1, 1, 1< 81, 0, 2, 0, 1< 81, 1, 2, 2, 1, 1< 81, 0, 3, 0, 3, 0, 1< 81, 1, 3, 3, 3, 3, 1, 1< 81, 0, 4, 0, 6, 0, 4, 0, 1< 81, 1, 4, 4, 6, 6, 4, 4, 1, 1< In the Pauli-Pascal triangle each new number is the addition of the two numbers above it, except when those two numbers and the number above them are all three equal, in that case the new number becomes zero. Pascal Triangle for Commuting Operators We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Press [ESC]comm[ESC] in order to show the commutator template. Here we assign the value of zero to the commutator of these two operators, they commute: Clear@v, wD; SetQuantumObject@v, wD; Pv, wT− = 0 0 Commuting operators reproduce the Pascal triangle, however, the terms do not appear in the standard order. Notice that "CommutatorExpand" is used instead of "Expand": 4 v7triangles.nb TraditionalForm@Grid@ Table@8 CommutatorExpand@Hv + wLn D <, 8n, 1, 7, 1<D, Dividers → AllDD v+w 2 vw + v2 + w2 3 v2 w + 3 vw2 + v3 + w3 3 5 v4 w 4 v w + 6 v2 w2 + 4 vw3 + v4 + w4 + 10 v3 w2 + 10 v2 w3 + 5 vw4 + v5 + w5 6 v5 w + 15 v4 w2 + 20 v3 w3 + 15 v2 w4 + 6 vw5 + v6 + w6 7 v6 w + 21 v5 w2 + 35 v4 w3 + 35 v3 w4 + 21 v2 w5 + 7 vw6 + v7 + w7 Coefficients of the Pascal Triangle for commuting operators GridA TableA9 expanded = CommutatorExpand@Hv + wLn D; TableACoefficientAexpanded, vn−j ⋅ wj E, 8j, 0, n<E =, 8n, 1, 7, 1<E, Dividers → AllE 81, 1< 81, 2, 1< 81, 3, 3, 1< 81, 4, 6, 4, 1< 81, 5, 10, 10, 5, 1< 81, 6, 15, 20, 15, 6, 1< 81, 7, 21, 35, 35, 21, 7, 1< In this Pascal triangle each new number is the addition of the two numbers above it. Expansions for Operators with a Commutator Equal to One We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Press [ESC]comm[ESC] in order to show the commutator template. Here we assign the value of one to the commutator of these two operators: Clear@q, pD; SetQuantumObject@q, pD; Pq, pT− = 1 1 v7triangles.nb Here are the expansions of integer powers of the sum of these two operators. Notice that "CommutatorExpand" is used instead of "Expand": TraditionalForm@Grid@ Table@8 CommutatorExpand@Hp + qLn D <, 8n, 1, 7, 1<D, Dividers → AllDD p+q 2 pq + p2 + q2 + 1 3 p2 q + 3 pq2 + p3 + 3 p + q3 + 3 q 4 p3 q +6 p2 q2 + 4 pq3 + 12 pq + p4 + 6 p2 + q4 + 6 q2 + 3 5 p4 q + 10 p3 q2 + 10 p2 q3 + 30 p2 q + 5 pq4 + 30 pq2 + p5 + 10 p3 + 15 p + q5 + 10 q3 + 15 q 6 p5 q + 15 p4 q2 + 20 p3 q3 + 60 p3 q + 15 p2 q4 + 90 p2 q2 + 6 pq5 + 60 pq3 + 90 pq + p6 + 15 p4 + 45 p2 + q6 + 15 q4 + 45 q2 + 15 7 p6 q + 21 p5 q2 + 35 p4 q3 + 105 p4 q + 35 p3 q4 + 210 p3 q2 + 21 p2 q5 + 210 p2 q3 + 315 p2 q + 7 pq6 + 105 pq4 + 315 pq2 + p7 + 21 p5 + 105 p3 + 105 p + q7 + 21 q5 + 105 q3 + 105 q This time the coefficients can be organized in a growing series of Pascal-like triangles: TraditionalFormAGridA JoinA9TableAColumnA9"Coefficients of ", pn−2 triangulo−j ⋅ qj =, Alignment → CenterE, 8triangulo, 0, 4<E=, TransposeA TableA TableA expanded = CommutatorExpand@Hp + qLn D; TableA IfApn−2 triangulo−j ⋅ qj =!= 1, CoefficientAexpanded, pn−2 triangulo−j ⋅ qj E, Select@expanded, And@FreeQ@, pD, FreeQ@, qDD &D E, 8j, 0, n − 2 triangulo<E , 8n, 1, 9, 1<E, 8triangulo, 0, 4<EEE, Dividers → All, ItemSize → FullEE Coefficients of pn- j q j Coefficients of p- j+n-2 q j Coefficients of p- j+n-4 q j 81, 1< 8< 8< 81, 2, 1< 81< 8< 81, 3, 3, 1< 83, 3< 8< 81, 4, 6, 4, 1< 86, 12, 6< 83< 81, 5, 10, 10, 5, 1< 810, 30, 30, 10< 815, 15< 81, 6, 15, 20, 15, 6, 1< 815, 60, 90, 60, 15< 845, 90, 45< 81, 7, 21, 35, 35, 21, 7, 1< 821, 105, 210, 210, 105, 21< 8105, 315, 315, 105< 81, 8, 28, 56, 70, 56, 28, 8, 1< 828, 168, 420, 560, 420, 168, 28< 8210, 840, 1260, 840, 210< 81, 9, 36, 84, 126, 126, 84, 36, 9, 1< 836, 252, 756, 1260, 1260, 756, 252, 36< 8378, 1890, 3780, 3780, 1890, 378< 81260 In each Pascal-like triangle each new number is the addition of the two numbers above it times a coefficient that depends on the triangle and the row. 5 6 v7triangles.nb Expansions for Operators with an Anticommutator Equal to One We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Press [ESC]anti[ESC] in order to show the anticommutator template (notice the + symbol in the subscript). Here we assign the value of one to the anticommutator of these two operators: Clear@r, sD; SetQuantumObject@r, sD; Pr, sT+ = 1 1 Here are the expansions of integer powers of the sum of these two operators: TraditionalForm@Grid@ Table@8 CommutatorExpand@Hr + sLn D <, 8n, 1, 7, 1<D, Dividers → AllDD r+s r2 2 + s2 + 1 2 r s + rs + r3 + r + s3 + s + r4 + 2 r2 + s4 + 2 s2 + 1 2 r2 s2 r4 s + 2 r3 s2 + 2 r2 s3 + 2 r2 s + rs4 + 2 rs2 + r5 + 2 r3 + r + s5 + 2 s3 + s 3 r4 s2 + 3 r2 s4 + 6 r2 s2 + r6 + 3 r4 + 3 r2 + s6 + 3 s4 + 3 s2 + 1 r6 s + 3 r5 s2 + 3 r4 s3 + 3 r4 s + 3 r3 s4 + 6 r3 s2 + 3 r2 s5 + 6 r2 s3 + 3 r2 s + rs6 + 3 rs4 + 3 rs2 + r7 + 3 r5 + 3 r3 + r + s7 + 3 s5 + 3 s3 + s This time the coefficients can be organized in a growing series of Pauli-Pascal-like triangles: v7triangles.nb 7 TraditionalFormAGridA JoinA9TableAColumnA9"Coefficients of ", rn−2 triangulo−j ⋅ sj =, Alignment → CenterE, 8triangulo, 0, 4<E=, TransposeA TableA TableA expanded = CommutatorExpand@Hr + sLn D; TableA IfArn−2 triangulo−j ⋅ sj =!= 1, CoefficientAexpanded, rn−2 triangulo−j ⋅ sj E, Select@expanded, And@FreeQ@, rD, FreeQ@, sDD &D E, 8j, 0, n − 2 triangulo<E, 8n, 1, 9, 1<E, 8triangulo, 0, 4<EEE, Dividers → All, ItemSize → FullEE Coefficients of Coefficients of Coefficients of Coefficients of rn- j s j r- j+n-2 s j r- j+n-4 s j r- j+n-6 s j 81, 1< 8< 8< 8< 81, 0, 1< 81< 8< 8< 81, 1, 1, 1< 81, 1< 8< 8< 81, 0, 2, 0, 1< 82, 0, 2< 81< 8< 81, 1, 2, 2, 1, 1< 82, 2, 2, 2< 81, 1< 8< 81, 0, 3, 0, 3, 0, 1< 83, 0, 6, 0, 3< 83, 0, 3< 81< 81, 1, 3, 3, 3, 3, 1, 1< 83, 3, 6, 6, 3, 3< 83, 3, 3, 3< 81, 1< 81, 0, 4, 0, 6, 0, 4, 0, 1< 84, 0, 12, 0, 12, 0, 4< 86, 0, 12, 0, 6< 84, 0, 4< 81, 1, 4, 4, 6, 6, 4, 4, 1, 1< 84, 4, 12, 12, 12, 12, 4, 4< 86, 6, 12, 12, 6, 6< 84, 4, 4, 4< Coefficients of r- j+n-8 s j 8< 8< 8< 8< 8< 8< 8< 81< 81, 1< In the Pauli-Pascal triangle each new number is the addition of the two numbers above it times a coefficient that depends on the triangle and the row, except when those two numbers and the number above them are all three equal, in that case the new number becomes zero. Expansions for Operators with a Commutator Equal to Another Operator We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Press [ESC]comm[ESC] in order to show the commutator template. Here we assign a third operator as the commutator of two operators: Clear@f, g, hD; SetQuantumObject@f, g, hD; Pf, gT− = h h 8 v7triangles.nb Expansions evaluate the commutator of f with g to the third operator h, and generate unevaluated commutators of f with h and g with h. Please notice the use of Expand and CommutatorExpand in this example: TraditionalForm@Grid@ Table@8 Expand@CommutatorExpand@Hf + gLn DD <, 8n, 1, 4, 1<D, Dividers → AllDD f +g 2 f g + f 2 + g2 - h @ f , hD + 2 @g, hD + 3 f 2 g + 3 f g 2 - 3 f h - 3 gh + f 3 + g 3 3 @ f , hDg + g@ f , hD + 5 f @g, hD + @ f , hD f + 3 f @ f , hD + 3 @g, hDg + 5 g@g, hD + 4 f 3 g + 6 f 2 g 2 - 6 f 2 h + 4 f g 3 - 3 f hg - 9 f gh - 6 g 2 h + f 4 + g 4 + 3 h2 Here the three commutators are defined. Notice that defining the commutator Ph, fT− also defines the commutator Pf, hT− Please notice the use of Expand and CommutatorExpand in this example: Clear@f, g, hD; SetQuantumObject@f, g, hD; Pf, gT− = h; Ph, gT− = 0; Ph, fT− = 0; TraditionalForm@Grid@ Table@8 Expand@CommutatorExpand@Hf + gLn DD <, 8n, 1, 4, 1<D, Dividers → AllDD f +g 2 f g + f 2 + g2 - h 3 f 2 g + 3 f g 2 - 3 f h - 3 gh + f 3 + g 3 4 f 3 g + 6 f 2 g 2 - 6 f 2 h + 4 f g 3 - 3 f hg - 9 f gh - 6 g 2 h + f 4 + g 4 + 3 h2 Expansions for Operators with Nonnested, Symbolic Commutators We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Here we define c and d as operators without a known commutator and without a known anticommutator Clear@c, dD; SetQuantumObject@c, dD; The expansions are given in terms of the unkwon commutator [c,d]. Notice the use of CommutatorExpand and Expand: v7triangles.nb TraditionalForm@Grid@ Table@8 Expand@CommutatorExpand@Hc + dLn DD <, 8n, 1, 5, 1<D, Dividers → AllDD c+d -@c, dD + 2 cd + c2 + d 2 -@c, dDc - 2 @c, dDd - 2 c@c, dD - d@c, dD + 3 c2 d + 3 cd 2 + c3 + d 3 -@c, dDc2 - 3 c2 @c, dD - 3 @c, dDd 2 - d 2 @c, dD - 2 c@c, dDc - d@c, dDc - 3 @c, dDcd 5 c@c, dDd - 2 d@c, dDd - 3 cd@c, dD + 2 @c, dD2 + 4 c3 d + 6 c2 d 2 + 4 cd 3 + c4 + d 4 -@c, dDc3 - 4 c3 @c, dD - 3 c2 @c, dDc - 2 c@c, dDc2 - d@c, dDc2 - 4 @c, dDc2 d - 9 c2 @c, dDd 6 c2 d@c, dD - 4 @c, dDd 3 - d 3 @c, dD - d 2 @c, dDc - 2 d 2 @c, dDd - 6 @c, dDcd 2 - 9 c@c, dDd 2 - 3 d@c, dDd 2 4 cd 2 @c, dD + 2 @c, dD2 c + 5 @c, dD2 d + 5 c@c, dD2 + 2 d@c, dD2 + 3 @c, dDc@c, dD + 3 @c, dDd@c, dD 3 cd@c, dDc - 7 c@c, dDcd - 3 d@c, dDcd - 7 cd@c, dDd + 5 c4 d + 10 c3 d 2 + 10 c2 d 3 + 5 cd 4 + c5 + d 5 Different (but equivalent) expansions are obtained with the option ReverseOrdering->True inside the CommutatorExpand command: TraditionalForm@Grid@ Table@8 Expand@CommutatorExpand@Hc + dLn , ReverseOrdering → TrueDD <, 8n, 1, 5, 1<D, Dividers → AllDD c+d -@d, cD + 2 dc + c2 + d 2 -2 @d, cDc - @d, cDd - c@d, cD - 2 d@d, cD + 3 dc2 + 3 d 2 c + c3 + d 3 cDc2 -3 @d, - c2 @d, cD - @d, cDd 2 - 3 d 2 @d, cD - 3 @d, cDdc - 2 c@d, cDc 5 d@d, cDc - c@d, cDd - 2 d@d, cDd - 3 dc@d, cD + 2 @d, cD2 + 4 dc3 + 6 d 2 c2 + 4 d 3 c + c4 + d 4 -4 @d, cDc3 - c3 @d, cD - 2 c2 @d, cDc - 6 @d, cDdc2 - 3 c@d, cDc2 - 9 d@d, cDc2 - c2 @d, cDd 4 dc2 @d, cD - @d, cDd 3 - 4 d 3 @d, cD - 4 @d, cDd 2 c - 9 d 2 @d, cDc - 3 d 2 @d, cDd - c@d, cDd 2 - 2 d@d, cDd 2 6 d 2 c@d, cD + 5 @d, cD2 c + 2 @d, cD2 d + 2 c@d, cD2 + 5 d@d, cD2 + 3 @d, cDc@d, cD + 3 @d, cDd@d, cD 3 c@d, cDdc - 7 d@d, cDdc - 7 dc@d, cDc - 3 dc@d, cDd + 5 dc4 + 10 d 2 c3 + 10 d 3 c2 + 5 d 4 c + c5 + d 5 Expansions for Operators with Nested, Symbolic Commutators We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Here we define i and j as operators without a known commutator and without a known anticommutator Clear@i, jD; SetQuantumObject@i, jD; The option NestedCommutators Ø True inside the command CommutatorExpand specifies that nested commutators can be generated 9 10 v7triangles.nb TraditionalForm@Grid@ Table@8 Expand@CommutatorExpand@Hi + jLn , NestedCommutators → TrueDD <, 8n, 1, 5, 1<D, Dividers → AllDD i+ j -@i, jD + 2 i j + i2 + j2 -3 i@i, jD - 3 j@i, jD + @i, @i, jDD + 2 @ j, @i, jDD + 3 i2 j + 3 i j2 + i3 + j3 -6 i2 @i, jD - 6 j2 @i, jD + 2 @i, @i, jDD j + 4 i@i, @i, jDD + 2 j@i, @i, jDD + 5 i@ j, @i, jDD + 8 j@ j, @i, jDD - 3 i@i, jD j 9 i j@i, jD + 3 @i, jD2 - @i, @i, @i, jDDD - @ j, @i, @i, jDDD - 3 @ j, @ j, @i, jDDD + 4 i3 j + 6 i2 j2 + 4 i j3 + i4 + j4 -10 i3 @i, jD + 10 i2 @i, @i, jDD + 9 i2 @ j, @i, jDD - 11 i2 @i, jD j - 19 i2 j@i, jD - 10 j3 @i, jD + 5 @i, @i, jDD j2 + 3 j2 @i, @i, jDD + 20 j2 @ j, @i, jDD - 7 i@i, jD j2 - 19 i j2 @i, jD + 3 @i, jD2 j - 3 @i, @i, @i, jDDD j - 2 @i, @i, jDD@i, jD - 3 @ j, @i, jDD@i, jD + 15 i@i, jD2 + 11 j@i, jD2 - 8 @i, jD@i, @i, jDD - 5 i@i, @i, @i, jDDD - 2 j@i, @i, @i, jDDD - 10 @i, jD@ j, @i, jDD - 4 i@ j, @i, @i, jDDD 3 j@ j, @i, @i, jDDD - 7 i@ j, @ j, @i, jDDD - 15 j@ j, @ j, @i, jDDD + 11 i@i, @i, jDD j + 2 j@i, @i, jDD j + i@ j, @i, jDD j + @i, jD j@i, jD + 9 i j@i, @i, jDD + 21 i j@ j, @i, jDD - 4 i j@i, jD j + @i, @i, @i, @i, jDDDD + @ j, @i, @i, @i, jDDDD + @ j, @ j, @i, @i, jDDDD + 4 @ j, @ j, @ j, @i, jDDDD + 4 @@i, jD, @i, @i, jDDD + 5 @@i, jD, @ j, @i, jDDD + 5 i4 j + 10 i3 j2 + 10 i2 j3 + 5 i j4 + i5 + j5 Expansions for Operators that Commute with their Commutator We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Here a, b are defined as operators that commute with their commutator: Clear@a, bD; SetQuantumObject@a, bD; Pa, Pa, bT− T− = 0; Pb, Pa, bT− T− = 0; The option NestedCommutators Ø True inside the command CommutatorExpand specifies that commutators of commutators must be generated. In this case, those nested commutators have a value of zero: TraditionalForm@Grid@ Table@8 Expand@CommutatorExpand@Ha + bLn , NestedCommutators → TrueDD <, 8n, 1, 5, 1<D, Dividers → AllDD a+b -@a, bD + 2 ab + a2 + b2 -3 a@a, bD - 3 b@a, bD + 3 a2 b + 3 ab2 + a3 + b3 -6 a2 @a, bD - 6 b2 @a, bD - 3 a@a, bDb - 9 ab@a, bD + 3 @a, bD2 + 4 a3 b + 6 a2 b2 + 4 ab3 + a4 + b4 -10 a3 @a, bD - 11 a2 @a, bDb - 19 a2 b@a, bD - 10 b3 @a, bD - 7 a@a, bDb2 - 19 ab2 @a, bD + 3 @a, bD2 b + 15 a@a, bD2 + 11 b@a, bD2 + @a, bDb@a, bD - 4 ab@a, bDb + 5 a4 b + 10 a3 b2 + 10 a2 b3 + 5 ab4 + a5 + b5 v7triangles.nb 11 Expansions for Operators with Nonnested, Symbolic Anticommutators We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Here we define k and m as operators without a known commutator and without a known anticommutator Clear@k, mD; SetQuantumObject@k, mD; The option Anticommutators Ø True inside the command CommutatorExpand specifies that anticommutators should be used in the expansion TraditionalForm@Grid@ Table@8 Expand@CommutatorExpand@Hk + mLn , Anticommutators → TrueDD <, 8n, 1, 5, 1<D, Dividers → AllDD k+m 8k, m< + k 2 + m2 8k, m<k + m8k, m< + k 2 m + km2 + k 3 + m3 2 2 2 8k, m<k + k 8k, m< + 8k, m<m + m2 8k, m< + m8k, m<k + 8k, m<km - k8k, m<m + km8k, m< + 2 k 2 m2 + k 4 + m4 8k, m<k 3 + k 2 8k, m<k + m8k, m<k 2 - k 2 8k, m<m + 2 k 2 m8k, m< + m3 8k, m< + m2 8k, m<k + 2 8k, m<km2 - k8k, m<m2 + m8k, m<m2 - 8k, m<2 m - k8k, m<2 + 8k, m<k8k, m< + 8k, m<m8k, m< + km8k, m<k + k8k, m<km + m8k, m<km + km8k, m<m + k 4 m + 2 k 3 m2 + 2 k 2 m3 + km4 + k 5 + m5 Expansions for Operators with Nested, Symbolic Anticommutators We load the Quantum Mathematica add-on: Needs@"Quantum`Notation`"D; SetQuantumAliases@D; Here we define t and u as operators without a known commutator and without a known anticommutator Clear@t, uD; SetQuantumObject@t, uD; The options Anticommutators Ø True and NestedCommutators Ø True inside the command CommutatorExpand specifies that nested anticommutators should be used in the expansion 12 v7triangles.nb TraditionalForm@Grid@ Table@8 Expand@Expand@ CommutatorExpand@Ht + uLn , Anticommutators → True, NestedCommutators → TrueDDD <, 8n, 1, 5, 1<D, Dividers → AllDD t+u 8t, u< + t2 + u2 -t8t, u< + u8t, u< + 8t, 8t, u<< + t2 u + tu2 + t3 + u3 2 t2 8t, u< + 2 u2 8t, u< - 8t, 8t, u<<u - 2 t8t, 8t, u<< - u8t, 8t, u<< - 4 t8u, 8t, u<< - 2 u8u, 8t, u<< + 2 t8t, u<u + 6 tu8t, u< - 8t, u<2 + 8t, 8t, 8t, u<<< + 2 8u, 8t, 8t, u<<< + 8u, 8u, 8t, u<<< + 2 t2 u2 + t4 + u4 -2 t3 8t, u< + 4 t2 8t, 8t, u<< + 2 t2 8u, 8t, u<< - 4 t2 8t, u<u + 2 t2 u8t, u< + 2 u3 8t, u< - 2 8t, 8t, u<<u2 + 4 u2 8t, 8t, u<< 2 u2 8u, 8t, u<< + 4 t8t, u<u2 - 14 tu2 8t, u< + 2 8t, u<2 u - 2 8t, 8t, 8t, u<<<u - 8u, 8t, 8t, u<<<u - 8t, 8t, u<<8t, u< + 3 8u, 8t, u<<8t, u< - 5 t8t, u<2 - 5 u8t, u<2 - 5 8t, u<8t, 8t, u<< - 3 t8t, 8t, 8t, u<<< - u8t, 8t, 8t, u<<< - 5 8t, u<8u, 8t, u<< 4 t8u, 8t, 8t, u<<< - 8 u8u, 8t, 8t, u<<< - 9 t8u, 8u, 8t, u<<< + u8u, 8u, 8t, u<<< + 5 t8t, 8t, u<<u + 2 t8u, 8t, u<<u + 2 8t, u<u8t, u< + 7 tu8t, 8t, u<< + 22 tu8u, 8t, u<< - 4 tu8t, u<u + 8t, 8t, 8t, 8t, u<<<< + 2 8u, 8t, 8t, 8t, u<<<< + 5 8u, 8u, 8t, 8t, u<<<< + 3 88t, u<, 8t, 8t, u<<< + 88t, u<, 8u, 8t, u<<< + t4 u + 2 t3 u2 + 2 t2 u3 + tu4 + t5 + u5 by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ [email protected]