Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Sección 1.1
Sistema de
Números Reales
Copyright © 2013, 2010, 2006, 2003 Pearson Education, Inc.
¿Entiendes?
Diferentes Tipos de Números = conjuntos
Los números naturales N (enteros positivos) son los
números que se usan para contar: N = {1, 2, 3, …}.
Los Cardinales (Whole numbers) W son los #
naturales añadiendo el 0:
W = {0, 1, 2, 3, …}.
Los Enteros (integers) I son los cardinales mas los
negativos de los números naturales:
I = {…, 3, 2, 1, 0, 1, 2, 3, …}.
Los números racionales Q son los cocientes de
enteros y enteros: Q a | a and b are integers, but b 0 .
b
Números Racionales
Números racionaels se escriben en 2 maneras
Decimal Finito (Termina)
1
0.5
2
El decimal termina.
Decimal Repetido (Periódico)
2
0.6666...
3
0.6
El decimal NO termina
Números Irracionales
Los irracionales son números que en su forma decimal
NO termine NI repite un patrón (NO periódico)
3 1.7320508...
Este número puede continuar indefinidamente sin un
patrón de dígitos repetidos.
Los números reales R son el conjunto compuesto de
todos los números racionales o irracionales.
Conjuntos de Números
Números Reale
Números Irracional
1
2 , 3, 5, ,...
2
Números Racionales
1
23 11
5, ,0, ,
2 24 4
Enteros
..., 3, 2, 1, 0, 1, 2, 3, ...
Cardinales
0, 1, 2, 3, 4, 5, ...
Naturales
1, 2, 3, 4, 5, ...
Ejemplo
Menciona los conjuntos de números a los que
pertenecen los siguientes números:
a. 6
naturales; cardinales; enteros; racional;
real
b. 0.2666…
racional; real
c. 1.437186138526… irracional; real
d. 0
cardinal; entero; racional; real
e. 1/9
rational; real
Propiedades de Números Reales
Commutative Property of Addition
Two numbers can be added in either order with
the same result.
Associative Property of Addition
When we add three numbers, we can group
them in any way.
Identity Property of Zero
When zero is added to a number, the sum is
that number.
Inverse Property of Addition
When a number is added to its opposite, the
sum is zero.
8+4=4+8
12 = 12
(2 + 4) + 3 = 2 + (4 + 3)
6+3=2+7
9=9
7+0=7
0 + 12 = 12
3 + (3) = 0
23 + 23 = 0
Mas Propiedades de Reales
Commutative Property of Multiplication
Two numbers can be multiplied in either order
with the same result.
Associative Property of Multiplication
When we multiply three numbers, we can
group them in any way.
Identity Property of One
When one is multiplied by a number,
the result is that number.
84=48
32 = 32
(2 4) 3 = 2 (4 3)
8 3 = 2 12
24 = 24
71=7
1 12 = 12
Mas Propiedades de Reales
Inverse Property
When a number is multiplied by its
reciprocal, the product is one.
Distributive Property of Multiplication
Multiplication can be distributed over
addition without changing the result.
1
4 1
4
1
17
1
17
3 (2 + 4) = (3 2) + (3 4)
3 6 = 6 + 12
18 = 18
Ejemplos
State the name of the property that justifies each
statement.
a. 6 (9 1) (6 9) 1
b. x 1.2 1.2 x
Associative property of addition
Commutative property of
addition
Ejemplos
State the name of the property that justifies each
statement.
a. 8 w w 8
Commutative property of
multiplication
1
b. 5 1
5
Inverse property of
multiplication
c. 6(9 4) 6 9 6 4
Distributive property of
multiplication over addition