Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Announcements • Quiz2istoday • Exam1nextweek! Networking Platform 1 Extensible - CSE 240 – Logic and Discrete Mathematics 1 SetTheory(Review) AsetisanunorderedcollecAonofelements. Someexamples: {1,2,3}isthesetcontaining“1”and“2”and“3.” {1,1,2,3,3}={1,2,3}sincerepeAAonisirrelevant. {1,2,3}={3,2,1}sincesetsareunordered. {1,2,3,…}isawaywedenoteaninfiniteset(inthiscase,the naturalnumbers). ∅={}istheemptyset,orthesetcontainingnoelements. Note:∅≠{∅} Networking Platform 2 Extensible - CSE 240 – Logic and Discrete Mathematics 2 SetTheory-DefiniAonsandnotaAon x∈Smeans“xisanelementofsetS.” x∉Smeans“xisnotanelementofsetS.” A⊆Bmeans“AisasubsetofB.” or, “B contains A.” or, “every element of A is also in B.” or, ∀x ((x ∈ A) → (x ∈ B)). A B VennDiagram Networking Platform 3 Extensible - CSE 240 – Logic and Discrete Mathematics 3 SetTheory-DefiniAonsandnotaAon A⊆Bmeans“AisasubsetofB.” A=BifandonlyifAandBhaveexactlythe sameelements. iff,A⊆BandB⊆A iff,∀x((x∈A)↔(x∈B)). SotoshowequalityofsetsAandB,show: A⊆B B⊆A Networking Platform 4 Extensible - CSE 240 – Logic and Discrete Mathematics 4 SetTheory-DefiniAonsandnotaAon A⊂Bmeans“AisapropersubsetofB.” – A⊆B,andA≠B. – ∀x((x∈A)→(x∈B))∧¬∀x((x∈B)→(x∈A)) – ∀x((x∈A)→(x∈B))∧∃x((x∈B)∧¬(x∈A)) A B Networking Platform 5 Extensible - CSE 240 – Logic and Discrete Mathematics 5 SetTheory-DefiniAonsandnotaAon Quickexamples: {1,2,3}⊆{1,2,3,4,5} {1,2,3}⊂{1,2,3,4,5} Is∅⊆{1,2,3}? Yes!∀x(x∈∅)→(x∈{1,2,3})holds, because(x∈∅)isfalse. Is∅∈{1,2,3}? Is∅⊆{∅,1,2,3}? No! Yes! Is∅∈{∅,1,2,3}? Yes! Networking Platform 6 Extensible - CSE 240 – Logic and Discrete Mathematics Vacuous 6 SetTheory-DefiniAonsandnotaAon QuizAme: Isx⊆{x}? No Is{x}⊆{x}? Yes Is{x}∈{x,{x}}? Is{x}⊆{x,{x}}? Is{x}∈{x}? Yes Yes No Networking Platform 7 Extensible - CSE 240 – Logic and Discrete Mathematics 7 SetTheory-Waystodefinesets • Explicitly:{John,Paul,George,Ringo} • Implicitly:{1,2,3,…},or{2,3,5,7,11,13,17,…} • Setbuilder:{x:xisprime},{x|xisodd}. Ingeneral{x:P(x)istrue},whereP(x)issomedescripAonof theset. :and|areread “suchthat”or “where” Ex.LetD(x,y)denote“xisdivisiblebyy.” Giveanothernamefor {x:∀y((y>1)∧(y<x))→¬D(x,y)}. Whatisthissetof numbers? Primes Networking Platform 8 Extensible - CSE 240 – Logic and Discrete Mathematics 8 SetTheory-Cardinality IfSisfinite,thenthecardinalityofS, |S|,isthenumberofdisAnctelementsinS. If S = {1,2,3}, |S|=3 If S = {3,3,3,3,3}, |S|=1 If S = ∅, |S|=0 If S = { 1, {1}, {1,{1}} }, |S|=3 If S = {0,1,2,3,…}, |S| is (one kind of) infinity. (more on this later) Networking Platform 9 Extensible - CSE 240 – Logic and Discrete Mathematics 9 SetTheory-Powersets IfSisaset,thenthepowersetofSis 2S={x:x⊆S}. akaP(S) IfS={a}, 2S={{},{a}}. IfS={a,b}, 2S={{},{a},{b},{a,b}}. IfS=∅, 2S={}. IfS={∅,{∅}}, Wesay,“P(S)isthe setofallsubsetsof S.” 2S={{},{∅},{{∅}},{∅,{∅}}}. Fact:ifSisfinite,|P(S)|=2|S|.(if|S|=n,|P(S)|=2n) Extensible Networking Platform 10 - CSE 240 – Logic and Discrete Mathematics 10 SetTheory-CartesianProduct TheCartesianProductoftwosetsAandBis: AxB={<a,b>:a∈A∧b∈B} IfA={Charlie,Lucy,Linus},and B={Brown,VanPelt},then AxB={<Charlie,Brown>,<Charlie,VanPelt>, <Lucy,Brown>,>,<Lucy,VanPelt>, <Linus,Brown>,<Linus,VanPelt>} A1xA2x…xAn={<a1,a2,…,an>:a1∈A1,a2∈A2,…,an∈An} Networking Platform 11Extensible - CSE 240 – Logic and Discrete Mathematics 11 SetTheory-Operators TheunionoftwosetsAandBis: A∪B={x:x∈Avx∈B} IfA={Charlie,Lucy,Linus},and B={Lucy,Desi},then A∪B={Charlie,Lucy,Linus,Desi} B Extensible Networking Platform 12 - CSE 240 – Logic and Discrete Mathematics A 12 SetTheory-Operators Theintersec3onoftwosetsAandBis: A∩B={x:x∈A∧x∈B} IfA={Charlie,Lucy,Linus},and B={Lucy,Desi},then A∩B={Lucy} B A Extensible Networking Platform 13 - CSE 240 – Logic and Discrete Mathematics 13 SetTheory-Operators Anotherexample IfA={x:xisaUSpresident},and B={x:xisdeceased},then A∩B={x:xisadeceasedUSpresident} B Extensible Networking Platform 14 - CSE 240 – Logic and Discrete Mathematics A 14 SetTheory-Operators Onemoreexample IfA={x:xisaUSpresident},and B={x:xisinthisroom},then A∩B={x:xisaUSpresidentinthisroom}=∅ B A Setswhose interseceonisempty arecalleddisjoint sets Extensible Networking Platform 15 - CSE 240 – Logic and Discrete Mathematics 15 SetTheory-Operators ThecomplementofasetAis: A={x:x∉A} IfA={x:xisbored}, thenA={x:xisnotbored} U Extensible Networking Platform 16 - CSE 240 – Logic and Discrete Mathematics A ∅ = U and U = ∅ 16 SetTheory-Operators Thesetdifference,A-B,is(alsowri]enA\B): U B A • A-B={x:x∈A∧x∉B} • A-B=A∩B Extensible Networking Platform 17 - CSE 240 – Logic and Discrete Mathematics 17 SetRepresentaAon • Howcouldyourepresentasetonacomputer? – BitmapRepresentaeon • Thesetof10numbers,with1,3,and5set – 1010100000 – LinkedList 1 3 5 • Howwouldyoucomplementtheset? – Bitmap? – LinkedList? Extensible Networking Platform 18 - CSE 240 – Logic and Discrete Mathematics 18 SetTheory-Operators Thesymmetricdifference,A⊕B,is: A⊕B={x:(x∈A∧x∉B)v(x∈B∧x∉A)} =(A-B)U(B-A) like“exclusiveor” U B A Extensible Networking Platform 19 - CSE 240 – Logic and Discrete Mathematics 19 SetTheory-Operators A⊕B={x:(x∈A∧x∉B)v(x∈B∧x∉A)} =(A-B)U(B-A) Proof: {x:(x∈A∧x∉B)v(x∈B∧x∉A)} ={x:(x∈A-B)v(x∈B-A)} ={x:x∈((A-B)U(B-A))} =(A-B)U(B-A) Extensible Networking Platform 20 - CSE 240 – Logic and Discrete Mathematics 20 SetTheory-FamousIdenAAes Iden3ty A∩U=A AU∅=A Domina3on AUU=U A∩∅=∅ Idempotent AUA=A A∩A=A Extensible Networking Platform 21 - CSE 240 – Logic and Discrete Mathematics 21 SetTheory-FamousIdenAAes • ExcludedMiddle AUA=U • Uniqueness A∩A=∅ • Doublecomplement A=A Extensible Networking Platform 22 - CSE 240 – Logic and Discrete Mathematics 22 SetTheory-FamousIdenAAes • Commuta3vity AUB= BUA A∩B= B∩A • Associa3vity (AUB)UC= AU(BUC) (A∩B)∩C= A∩(B∩C) • Distribu3vity AU(B∩C)= (AUB)∩(AUC) A∩(BUC)= (A∩B)U(A∩C) Extensible Networking Platform 23 - CSE 240 – Logic and Discrete Mathematics 23 SetTheory-FamousIdenAAes • DeMorgan’sI • DeMorgan’sII (AUB)=A∩B (A∩B)=AUB Extensible Networking Platform 24 - CSE 240 – Logic and Discrete Mathematics A B Handwavingis goodfor intuieon,butwe aimforamore formalproof. 24 SetTheory–4WaystoproveidenAAes • ShowthatA⊆BandthatB⊆A. • Useamembershiptable. Liketruthtables • UsepreviouslyprovenidenAAes. Like≡ • Uselogicalequivalencestoprove equivalentsetdefiniAons. Nothard,alijletedious Extensible Networking Platform 25 - CSE 240 – Logic and Discrete Mathematics 25 SetTheory–4WaystoproveidenAAes Provethat (A U B) = A ∩ B 1. (⊆)(x∈AUB)→(x∉AUB)→ (x∉Aandx∉B)→(x∈A∩B) ⊇ 2.()(x∈A∩B)→(x∉Aandx∉B) →(x∉AUB)→(x∈AUB) Extensible Networking Platform 26 - CSE 240 – Logic and Discrete Mathematics 26 SetTheory–4WaystoproveidenAAes Provethat (AUB)=A∩B usingamembershiptable. 0:xisnotinthespecifiedset 1:otherwise A B A B A∩B AUB AUB 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 Haven’tweseen thisbefore? Extensible Networking Platform 27 - CSE 240 – Logic and Discrete Mathematics 27 SetTheory–4WaystoproveidenAAes (AUB)=A∩B Provethatusinglogically equivalentsetdefiniAons. (AUB)={x:¬(x∈Avx∈B)} ={x:¬(x∈A)∧¬(x∈B)} ={x:(x∈A)∧(x∈B)} =A∩B Extensible Networking Platform 28 - CSE 240 – Logic and Discrete Mathematics 28 SetTheory-GeneralizedUnion n A = A ∪A i 1 2 ∪ … ∪ An i=1 Ex.LetU=N,anddefine: € Ai = {x : ∃k > 1, x = ki, k ∈ Ν} A1={2,3,4,…} A2={4,6,8,…} A3={6,9,12,…} € Extensible Networking Platform 29 - CSE 240 – Logic and Discrete Mathematics 29 SetTheory-GeneralizedUnion n A = A ∪A i 1 2 ∪ … ∪ An i=1 Ex.LetU=N,anddefine: € Ai = {x : ∃k > 1, x = ki, k ∈ Ν} Then ∞ € Ai = ? i= 2 Extensible Networking Platform 30 - CSE 240 – Logic and Discrete Mathematics € primes a) b) c) d) e) Primes Composites ∅ N Ihavenoclue. 30 SetTheory-GeneralizedIntersecAon n A = A ∩A i 1 2 ∩ … ∩ An i=1 Ex.LetU=N,anddefine: € Ai = {x : ∃k, x = ki, k ∈ Ν} A1={1,2,3,4,…} A2={2,4,6,…} A3={3,6,9,…} € Extensible Networking Platform 31 - CSE 240 – Logic and Discrete Mathematics 31 SetTheory-GeneralizedIntersecAon n A = A ∩A i 1 2 ∩ … ∩ An i=1 Ex.LetU=N,anddefine: € Ai = {x : ∃k, x = ki, k ∈ Ν} Then n € A = i ? i=1 Extensible Networking Platform 32 - CSE 240 – Logic and Discrete Mathematics € Muleplesof LCM(1,…,n) 32 SetTheory-Inclusion/Exclusion Example: Howmanypeoplearewearingawatch? Howmanypeoplearewearingsneakers? Howmanypeoplearewearinga watchORsneakers? B A |A∪B|=|A|+|B|-|A∩B| Extensible Networking Platform 33 - CSE 240 – Logic and Discrete Mathematics 33 SetTheory-Inclusion/Exclusion Example: Thereare83csmajors. 40aretakingcs240. 40 31aretakingcs101. 22aretakingboth. Howmanyaretakingneither? 31 83-(40+31-22)=34 Extensible Networking Platform 34 - CSE 240 – Logic and Discrete Mathematics 34 SetTheory-GeneralizedInclusion/Exclusion Supposewehave: B A C AndIwanttoknow|AUBUC| |AUBUC|=|A|+|B|+|C| -|A∩B|-|A∩C|-|B∩C| +|A∩B∩C| Extensible Networking Platform 35 - CSE 240 – Logic and Discrete Mathematics 35 Quiz Extensible Networking Platform 36 - CSE 240 – Logic and Discrete Mathematics 36